
Weak solutions to rate-independent
systems

Mach Nguyet Minh

ACMAC, Department of Applied Mathematics

University of Crete

Pure and Applied Mathematics Seminar

Cyprus, 27 May 2013

1



Contents

[1] Rate-independent systems.

[2] Abstract framework.

[3] An example in 1−dim.

[4] Energetic solutions.

[5] BV solutions constructed by vanishing viscosity.

[6] BV solutions constructed by epsilon-neighborhood method.

[7] Future works.

2



Rate-independent systems

• Perceive as a limit problem in many physical and mechanics

problems.

• No inertial effects.

• No own dynamics.

• Preserved under time rescaling.

• Application: dry friction, crack propagation, delamination,

shape-memory alloys, etc.

Simple example:

0 ∈ Sign(ẏ(t)) + DU(y(t))− `(t), y(0) = y0.
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Abstract framework

• X Banach space. Here: X = Rd.

• Ψ(x) dissipation functional (convex and positively

1-homogeneous). Here: Ψ(v) = |v|.

• E (t, x) smooth energy functional, for instance,

E ∈ C2([0, T ]×X).

Differential inclusion:

0 ∈ ∂Ψ(ẋ(t)) +∇xE (t, x(t)) for a.e. t ∈ (0, T ). (1)

The position x is stable ⇔ it minimizes the total energy (total

energy = external energy + dissipation).
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Solutions to RIS

0 ∈ ∂Ψ(ẋ(t)) +∇xE (t, x(t)) for a.e. t ∈ (0, T ).

• E (t, .) convex ⇒ existence of a unique strong solution.

• In general, strong solutions may not exist ⇒ weak solutions are

needed.

There are many notions of weak solutions:

• Energetic solutions (Francfort-Marigo 1998, Mielke-Theil 1999)

• Local solutions (Toader-Zanini 2009)

• Epsilon-stable solutions (Larsen 2010)

• Parametrized solutions (Mielke-Rossi-Savaré 2010)

• BV solutions (Mielke-Rossi-Savaré 2010-2012)
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An example in 1-dim

• E (t, x) := x2 − x4 + 0.3x6 + t (1− x2)− x, t ∈ [0, 2], x ∈ R.

• Dissipation Ψ(v) := |v|. Initial position x(0) := 0.

Figure 1. Function E (t, x) + |x− x0| with t = 0 and x0 = 0.

Unique global minimizer at x = 0.
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Energy plus dissipation function at t = 1/6

Figure 2. Function E (t, x) + |x− x0| with t = 1/6 and x0 = 0.

Two global minimizers at x = 0 and x =
√

5/3.
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Energy plus dissipation function at t = 1/3

Figure 3. Function E (t, x) + |x− x0| with t = 1/3 and x0 = 0.

Unique global minimizer at x =

√
10+
√
10+90t

3 .

One local minimizer at x = 0.
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Energy plus dissipation function at t = 1

Figure 4. Function E (t, x) + |x− x0| with t = 1 and x0 = 0.

Unique global minimizer at x =

√
10+
√
10+90t

3 .

x = 0 is no longer a local minimizer.
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Energy plus dissipation function at t = 1.2

Figure 5. Function E (t, x) + |x− x0| with t = 1.2 and x0 = 0.

Unique global minimizer at x =

√
10+
√
10+90t

3 .

x = 0 is neither local minimizer nor global minimizer.
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An example in 1-dim

• Reasonable solution

x(t) =

0 if t ∈ [0, 1);√
10+
√
10+90t

3 if t ∈ (1, 2].

and x(1) ∈ {0,
√

20/3}.

• Strong solution xstrong(t) = 0 for t ∈ [0, 1). Strong solution

cannot be extended continuously when t ≥ 1, since it would

violate the local minimality.
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Energetic solutions

(Francfort-Marigo 1998, Mielke-Theil 1999)

Definition. x(·) is an energetic solution if

• (Initial condition) x(0) = x0,

• (Global stability) E (t, x(t)) ≤ E (t, z) + Ψ(z − x(t)), ∀z ∈ X.

• (Energy-dissipation balance) For all 0 ≤ s ≤ t ≤ T ,

E (t, x(t))− E (s, x(s)) =

∫ t

s

∂tE (r, x(r))dr −Diss(x(·); [s, t]).

Dissipation energy = usual variation (or length), i.e.,

Diss(x; [s, t]) :=

sup

{
N∑
n=1

Ψ(x(tn)− x(tn−1)) | N ∈ N, s = t0 < t1 < ... < tN = t

}
.
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Construction of energetic solutions

• Time-partition ti := iτ , τ > 0, i = 0, 1, 2, . . .

• Write equation (1) into discrete form

0 ∈ ∇xE (tn, x
τ
n) + ∂Ψ

(
xτn − xτn−1

τ

)
.

• Let xτ0 := x0 and xτn ∈ argmin
x∈X

{E (tn, x) + Ψ(x− xτn−1)}.

Impose one technical assumption on the loading: There exists λ

such that |∂tE (s, x)| ≤ λE (s, x) for all (s, x) ∈ [0, T ]×R.

• Energy bound E (tn, x
τ
n) ≤ E (0, x0) eλtn .

• Interpolation xτ (t) := xτn−1 for all t ∈ [tn−1, tn).

• Integral bound for xτ , 0 ≤ s ≤ t ≤ T

E (t, xτ (t))− E (s, xτ (s)) ≤
∫ t

s

∂tE (r, xτ (r)) dr−Diss(xτ ; [s, t]).
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Construction of energetic solutions

• Uniform bound for Diss(xτ ; [0, T ]) for every τ .

• Helly’s Principle ⇒ Exists subsequence {τk} st xτk(t)→ x(t)

pointwise as τk → 0 for every t ∈ [0, T ].

• Claim: x(t) is an energetic solution of (E ,Ψ, x0).

(1) Global stability: E (t, x(t)) ≤ E (t, z) + Ψ(z − x(t)), ∀z ∈ X.

(2) (Energy-dissipation balance) For all 0 ≤ s ≤ t ≤ T ,

E (t, x(t))− E (s, x(s)) =

∫ t

s

∂tE (r, x(r))dr −Diss(x(·); [s, t]).
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An example in 1-dim

• Reasonable solution

x(t) =

0 if t ∈ [0, 1);√
10+
√
10+90t

3 if t ∈ (1, 2].

and x(1) ∈ {0,
√

20/3}.

• Strong solution xstrong(t) = 0 for t ∈ [0, 1). Strong solution

cannot be extended continuously when t ≥ 1, since it would

violate the local minimality.

• Energetic solution

xener(t) =

0 if t ∈ [0, 1/6);√
10+
√
10+90t

3 if t ∈ (1/6, 2].

and xener(1/6) ∈ {0,
√

5/3}.
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Energy plus dissipation function at t = 1/6

Figure 2. Function E (t, x) + |x− x0| with t = 1/6 and x0 = 0.

Two global minimizers at x = 0 and x =
√

5/3.

(Global stability: E (t, x(t)) ≤ E (t, z) + Ψ(z − x(t)), ∀z ∈ X.)
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BV solutions (Mielke-Rossi-Savaré 2010)

Definition. x(·) is a BV solution if

• (Initial condition) x(0) = x0,

• (Local stability) |∇xE (t, x(t))| ≤ 1 for a.e. t,

• (New energy-dissipation balance) For all 0 ≤ s ≤ t ≤ T ,

E (t, x(t))−E (s, x(s)) =

∫ t

s

∂tE (r, x(r))dr−Dissnew(x(·); [s, t]).

For every x(·) ∈ BV([0,T]) : Dissnew(x; [s, t]) ≥ Diss(x; [s, t]).

Thus,

E (t, xBV(t))−E (s, xBV(s)) ≤
∫ t

s

∂tE (r, xBV(r))dr−Diss(xBV(·); [s, t]).

In some cases, the inequality is strict!
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New dissipation vs Old dissipation

• Old dissipation:

Diss(x; [s, t]) :=

sup

{
N∑
n=1

Ψ(x(tn)− x(tn−1)) | N ∈ N, s = t0 < t1 < ... < tN = t

}
.

• Energy released at jump of energetic solution:

E (t, xener(t+))− E (t, xener(t−)) = −|xener(t+)− xener(t)|

−|xener(t)− xener(t−)|.
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• New dissipation

Dissnew(x; [s, t]) :=

= Diss(x; [s, t])−
∑
t∈J

[
|x(t−)− x(t)|+ |x(t)− x(t+)|

]
+
∑
t∈J

[
∆new(t, x(t−), x(t)) + ∆new(t, x(t), x(t+))

]
,

where

∆new(t, a, b) := inf
v∈AC([0,T ];Rd)
v(0)=a,v(1)=b

{∫ 1

0

|v̇(r)| ·max{1, |∇xE (t, v(r))|}
}
.
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Optimal transition

Proposition. (Mielke-Rossi-Savaré 2012)

• ∃ an optimal transition between u− and u+ iff

E (t, u+)− E (t, u−) = −∆new(t;u−, u(t))−∆new(t;u(t), u+).

• Absolutely continuous curve γ : [0, 1]→ Rd connecting u− and

u+ and satisfying

(i) |∇xE (t, γ(s))| ≥ 1 for all s ∈ (0, 1).

(ii) ∇xE (t, γ(s)) · γ̇(s) = −|∇xE (t, γ(s))| · |γ̇(s)|.

In 1-dim, optimal transition is the linear path connecting u− and

u+.
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Vanishing viscosity method (Mielke-Rossi-Savaré 2012)

• Add a small viscosity into the dissipation to result Ψε.

Ψε(v) = |v|+ viscosity,

i.e., viscosity = εΨ0,Ψ0 is any convex function vanishes at 0

and has super-linear growth at infinity.

• The new incremental problem is

xτ,εn ∈ argmin
x∈X

{
E (tn, x) + τΨε

(
x− xτ,εn−1

τ

)}
.

• Energy bound: E (tn, x
τ,ε
n ) ≤ E (0, x0)eλtn .

• Interpolation xτ,ε(t) := xτ,εn−1 for t ∈ [tn−1, tn).

• Uniform bound for Diss(xτ,ε; [0, T ]) for every τ, ε.

• Helly’s Principle ⇒ Exist subsequences {τk}, {εk} st

xτk,εk(t)→ x(t) pointwise as k →∞ for every t ∈ [0, T ].
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Vanishing viscosity method (Mielke-Rossi-Savaré 2012)

Claim: x(t) is a BV solution of (E , | · |, x0) provided that τ/ε2 → 0,

i.e. x(t) satisfies

• (Initial condition) x(0) = x0.

• (Local stability) |∇xE (t, x(t))| ≤ 1 if t /∈ J .

• (New energy-dissipation balance) For all 0 ≤ s ≤ t ≤ T ,

E (t, x(t))−E (s, x(s)) =

∫ t

s

∂tE (r, x(r))dr−Dissnew(x(·); [s, t]).
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An example in 1-dim

• E (t, x) := x2 − x4 + 0.3x6 + t (1− x2)− x, t ∈ [0, 2], x ∈ R.
Initial position: x(0) := 0.

• Choose viscosity as ε|x|2. Corresponding BV solution x(t) = 0

for all t ∈ [0, 2].

• Choose viscosity as ε5 x6. The corresponding BV solution:

x(t) =

0 if t ∈ [0, 1);√
10+
√
10+90t

3 if t ∈ (1, 2].

and x(1) ∈ {0,
√

20/3}.
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Epsilon-neighborhood method

• Fix ε > 0. With time-partition τ > 0, choose xε,τ0 = x0 and

xε,τn ∈ argmin
|x−xε,τn−1|≤ε

{
E (tn, x) + |x− xε,τn−1|

}
.

• Interpolation + pointwise limit (τ → 0) ⇒ BV function xε(·).

(i) (Epsilon local stability) If xε(·) is right-continuous at t, then

E (t, xε(t)) ≤ E (t, z) + |z − xε(t)| for all |z − xε(t)| ≤ ε.

(ii) (Energy-dissipation inequalities) −Dissnew(xε; [s, t]) ≤
E (t, xε(t))− E (s, xε(s))−

∫ t
s
∂tE (r, xε(r))dr ≤ −Diss(xε; [s, t]).

• Pointwise limit of xε(·) (ε→ 0 )⇒ BV function x(·).

Claim: x(·) satisfies the definition of BV solutions.
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An example in 1-dim

• X = R, Ψ(x) = |x|, x(0) = 0,

E (t, x) = x2 − x4 + 0.3x6 + t(1− x2)− x, t ∈ [0, 2].

• BV solution by epsilon-neighborhood

x(t) = 0 if t < 1, x(t) =

√
10 +

√
10 + 90t

3
if t > 1.

• This solution jumps at time t = 1, from x = 0 to x =
√

20/3.

This is a reasonable solution!
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Epsilon-neighborhood method

• Energy bound: E (tn, x
ε,τ
n ) ≤ E (0, x0) eλtn .

• Interpolation xε,τ (t) := xε,τn−1 for all t ∈ [tn−1, tn).

• Integral bound: For all 0 ≤ s ≤ t ≤ T

E (t, xε,τ (t))−E (s, xε,τ (s)) ≤
∫ t

s

∂tE (r, xε,τ (r)) dr−Diss(xε,τ ; [s, t]).

• Uniform bound for Diss(xε,τ ; [0, T ]) for every τ, ε.

• For every ε fixed: Helly’s principle ⇒ exists subsequence {τk}
st xε,τk(t)→ xε(t) pointwise as k →∞ for every t ∈ [0, T ].

• Helly’s principle ⇒ exists a subsequence {εk} st xεk(t)→ x(t)

pointwise as k →∞ for every t ∈ [0, T ].
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New energy-dissipation balance: Lower bound

Proposition (Lower bound, Mielke-Rossi-Savaré 2010). For any

BV function u, for any energy functional E ∈ C1 satisfying

|∇xE (t, u(t))| ≤ 1 for a.e. t ∈ (0, T ), it holds that

E (t1, u(t1))−E (t0, u(t0)) ≥
∫ t1

t0

∂tE (s, u(s)) ds−Dissnew(u; [t0, t1]).
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New energy-dissipation balance: Upper bound

Claim: At jump points

E (t, x(t+))−E (t, x(t−)) ≤ −∆new(t, x(t−), x(t))−∆new(t, x(t), x(t+)).

Lemma (Approximate optimal transition). Write xj = xε,τ (tj).

Then

−∇xE (ti, xi) · (xi − xi−1) = max{1, |∇xE (ti, xi)|} · |xi − xi−1|.

Consequently, if δ ≥ max{|t− ti|, ε, τ} and v : [a, b]→ Rd is the

linear curve connecting xi−1 and xi, then

b∫
a

max{1, |∇xE (t, v(s))|}.|v̇(s)|ds ≤ E (t, xi−1)−E (t, xi)+g(δ)·|xi−xi−1|

where g(δ)→ 0 as δ → 0.
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Proof of Approximate Optimal Transition Lemma

Recall that xi is a minimizer for

inf
|z−xi−1|≤ε

h(z) = inf
|z−xi−1|≤ε

{E (ti, z) + |z − xi−1|} .

1. Denote c := |xi − xi−1|; then xi is also a minimizer for

inf
|z−xi−1|=c

h(z).

By Lagrange multiplier, there exists λ ∈ R such that

∇xE (ti, xi) = λ(xi − xi−1).

2. Using ∂t (h(xi−1 + t(xi − xi−1))) ≤ 0 at t = 1, we obtain

∇xE (ti, xi) · (xi − xi−1) + |xi − xi−1| ≤ 0.

Thus either xi = xi−1, or |∇xE (ti, xi)| ≥ 1 and λ < 0.
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New energy-dissipation balance: Upper bound

Lemma. If x(t) jumps at t, then

E (t, x(t))− E (t, x(t−)) ≤ −∆new(t, x(t−), x(t)),

E (t, x(t+))− E (t, x(t)) ≤ −∆new(t, x(t), x(t+)).

Proof: By linear interpolation, construct a curve v : [0, 1]→ Rd

connecting the points

x(t−), xε,τ (t− δ) = xε,τ (ti), x
ε,τ (ti+1), ..., xε,τ (ti+k) = xε,τ (t), x(t).

30



Approximate optimal transition

Figure 6. Approximate optimal transition between x(t−) and x(t).

x(t−)→ xε,τ (t− δ) = xε,τ (ti)→ xε,τ (ti+1)

→ xε,τ (ti+2)→ · · · → xε,τ (ti+k) = xε,τ (t)→ x(t).
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New energy-dissipation balance: Upper bound

Then

∆new(t, x(t−), x(t)) ≤
∫ 1

0

max{1, |∇xE (t, v(s))|} · |v̇(s)| ds

≤ E (t, xε,τ (t− δ))− E (t, xε,τ (t)) + Cg(δ)

+C|x(t−)− xε,τ (t− δ)|+ C|xε,τ (t)− x(t)|.

Taking the limit τ → 0, then ε→ 0, then δ → 0, we conclude that

∆new(E , t, x(t−), x(t)) ≤ E (t, x(t−)− E (t, x(t)).
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Future works

Problem 1: Improve the weak local stability for BV solutions

constructed by epsilon-neighborhood method.

Problem 2: Prove the existence of BV solutions constructed

by epsilon-neighborhood for capillary drops.
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