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Electrical Impedance Tomography (EIT)

Figure: A circular domain with surface electrodes

(Source: Medical Imaging Study Group at Yonsei Univ.)

I reference body
Ω ⊂ Rn, n ≥ 2

I apply small currents
(g(x)|∂Ω)

I measure induced
voltages (u(x)|∂Ω)

 reconstruction
conductivity σ(x)
inside Ω
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Mathematical Model

Recover σ from Neumann-to-Dirichlet Operator

Λ(σ) : L2
�(∂Ω)→ L2

�(∂Ω), g |∂Ω 7→ u|∂Ω,

where u solves {
∇ · (σ∇u) = 0, in Ω,

σ∂νu|∂Ω = g |∂Ω, on ∂Ω.

D-bar Method; Factorization Method; Enclosure Method; ...

Linearization (NOSER, GREIT, ...). Λ(σ),Λ′(σ)κ: linear, compact, self-adjoint

Linearizing around a reference conductivity σ0: Λ(σ)− Λ(σ0) ≈ Λ′(σ0)(σ − σ0)
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NOSER

NOSER ( Cheney et al., 1990), GREIT ( Adler et al., 2009)

Solve Λ′(σ0)κ ≈ Λ(σ)− Λ(σ0), then κ ≈ σ − σ0

I multiple possibilities to measure residual norm and to
regularize

I no rigorous theory for single linearization step

I almost no theory for Newton iteration:
I Dobson (1992): (Local) convergence for regularized EIT eqn

I Lechleiter/Rieder (2008): (Local) convergence for discretized setting
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Exact (One-step) Linearization

Theorem (Harrach/Seo, SIAM J. Math. Anal. 2010)
Let κ, σ, σ0 piecewise analytic and Λ′(σ0)κ = Λ(σ)− Λ(σ0).
Then

(a) supp∂Ωκ = supp∂Ω(σ − σ0)

(b) σ0

σ
(σ − σ0) ≤ κ ≤ σ − σ0 on the bdry of supp∂Ω(σ − σ0)

I Existence of exact solution is unknown

I In practice: finite-dimensional, noisy measurements
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Monotonicity Test

I Monotonicity:

τ ≤ σ =⇒ Λ(τ) ≥ Λ(σ)

I Idea: Simulate Λ(τ) for test conductivity τ and compare
with Λ(σ) (Tamburrino/Rubinacci 02, Lionheart, Soleimani, Ventre, . . . )

I Inclusion detection: For σ = 1 + χD with unknown D, use
τ = 1 + χB , with small ball B

B ⊂ D =⇒ τ ≤ σ =⇒ Λ(τ) ≥ Λ(σ)

I Algorithm: Mark all balls B with Λ(1 + χB) ≥ Λ(σ)

I Result: upper bound of D
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Monotonicity Test

I Monotonicity test detects exact shape:

Theorem (Harrach/Ullrich, SIAM J. Math. Anal., 2013)

Ω \ D connected, σ = 1 + χD

B ⊆ D ⇐⇒ Λ(1 + χB) ≥ Λ(σ)

I For faster implementation:

B ⊆ D ⇐⇒ Λ(1) +
1

2
Λ′(1)χB ≥ Λ(σ)

I Does not behave well in high level of noise
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Mathematical Setting

Assumptions:

I Continuum model

I Ω: bounded

I Homogeneous background: σ0 ≡ 1

I True conductivity σ = 1 + γχD , γ ∈ L∞(Ω)
(implies definiteness)

I Ω \ D connected
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Combination idea of NOSER and MT

min
{constraints}

‖Λ(σ)− Λ(1)− Λ′(1)κ‖ (1)

I Approximate by
A(κ) := (〈gi , (Λ(σ)− Λ(1)− Λ′(1)κ) gj〉)Ni ,j=1

I Minimize ‖A(κ)‖F
I Approximate κ by

∑T
k=1 akχPk

I Use Monotonicity Test to define constraints
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Monotonicity-based Constraints

Ω \ D connected:

(i) If Pk lies inside the true inclusion

Λ(1)− Λ(σ) + αΛ′(1)χk ≥ 0

for (at least) all α ∈ [0, a], where a = 1− 1
1+infD γ

.

(ii) If Pk lies outside the inclusions then

Λ(1)− Λ(σ) + αΛ′(1)χk 6≥ 0

for all α ≥ 0.

 Find βk biggest

Λ(1)− Λ(σ) + αΛ′(1)χk ≥ 0 ∀α ∈ [0, βk ]. (2)
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Monotonicity-based Constraints

Lemma
Ω \ D connected: βk > 0 iff Pk ⊆ D.

I We allow βk =∞
I Constraints defined by Monotonicity Test:

T∑
k=1

akχPk
, 0 ≤ ak ≤ min(a, βk)

I Ω \ D connected: min(a, βk) = a if Pk ⊂ D,
min(a, βk) = 0 if Pk * D
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Monotonicity-based Constraints

I Use βk alone: also improve shape reconstruction
[Zhou, Harrach and Seo, Monotonicity-based Electrical Impedance Tomography

Lung Imaging, submitted]

I Appearance of a:
I make sure minimizer exists
I produce much improved results (see last figure)
I numerical results more stable in high level of noise
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Existence of Minimizer

Theorem

min

{
‖A(κ)‖F : κ =

T∑
k=1

akχPk
, 0 ≤ ak ≤ min(a, βk)

}
(3)

(i) Unique minimizer κ̂.

(ii) Pk ⊂ suppκ̂ iff Pk ⊂ D.
Moreover, κ̂ =

∑T
k=1 min(a, βk)χPk

.

Use operator norm in (1)  same result, numerical results not good as Frobenius norm
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Sketch of proof

(i) κ 7→ ‖A(κ)‖2
F :=

∑N
i ,j=1 〈gi , r(κ)gj〉2 continuous  a

minimizer in compact sets.

(ii) Step 1: If κ =
∑T

k=1 αkχk , 0 ≤ αk ≤ min(a, βk), then
r(κ) ≤ 0

I if αk > 0: Lemma 3  Pk ⊆ D
I αk ≤ a: ∀g ∈ L2

�(∂Ω)

〈g, r(κ)g〉 =
〈
g, (Λ(σ)− Λ(1)− Λ′(1)κ)g

〉
≤ −

∫
D
a|∇u0

g |
2
dx +

∑
k

∫
Pk

αk |∇u0
g |

2
dx ≤ 0

Step 2: κ̂ =
∑T

k=1 α̂kχk is a minimizer of (3). Then
suppκ̂ ⊆ D.

I if α̂k > 0:
Λ(σ)− Λ(1)− Λ′(1)αχk ≤ Λ(σ)− Λ(1)− Λ′(1)κ̂ ≤ 0 for all α ≤ α̂k .

I Lemma 3  Pk ⊆ D.
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Sketch of proof

Step 3: κ̂ =
∑T

k=1 α̂kχk is a minimizer of (3). If Pk ⊆ D, then

Pk ⊆ suppκ̂.
I If Pk * suppκ̂ α̂k = 0.
I Pk ⊆ D: Lemma 3  ∃βk > 0: Λ(σ)− Λ(1)− Λ′(1)αχk ≤ 0 ∀α ∈ [0, βk ].
I Claim: for any α, 0 ≤ α ≤ min(a, βk ) : ‖A(κ̂+ αχk )‖F < ‖A(κ̂)‖F

‖A(κ̂+ αχk )‖2
F − ‖A(κ̂)‖2

F =
N∑
i=1

|λi (κ̂+ αχk )|2 −
N∑
i=1

|λi (κ̂)|2 =

=
N∑
i=1

(λi (κ̂+ αχk ) + λi (κ̂)) · (λi (κ̂+ αχk )− λi (κ̂)) .

I Step 3  r(κ̂) ≤ 0 : x>A(κ̂)x =
∑N

i,j=1 xixj
〈
gi , r(κ̂)gj

〉
= 〈g , r(κ̂)g〉 ≤ 0

I −A(κ̂),−A(κ̂+ αχk ): positive semi-definite symmetric matrices  all of
eigenvalues are non-negative.

I Bk := (−
〈
gi ,Λ

′(1)χkgj
〉
)Ni,j=1  A(κ̂+ αχk ) = A(κ̂) + αBk . Weyl’s Inequalities:

λi (κ̂+ αχk )) ≥ λi (κ̂) + αλN(Bk ) ≥ λi (κ̂) for all i ∈ {1, . . . ,N}. (4)
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Sketch of proof

Step 4: κ̂ is a minimizer of (3)  κ̂ =
∑T

k=1 min(a, βk)χk .

I κ̂ ≤
∑T

k=1 min(a, βk )χk

I If there exists Pk : κ̂(x) < min{a, βk} a.e. ∃h > 0: κ̂+ hχk ≤ min(a, βk ) a.e.

I Step 1  r(κ̂) ≤ 0, r(κ̂+ hχk ) ≤ 0.

I Similar to Step 3: ‖A(κ̂+ hχk )‖F < ‖A(κ̂)‖F
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Numerical results

I Minimizing problem (3): quadratic minimizing problem +
linear bounds

I cvx: can be solve directly, same complexity as LP

I cvx: (3) equiv. to

min

{
‖A0 −

T∑
k=1

akAk‖F : 0 ≤ ak ≤ min(a, βk)

}
A0 := (

〈
gi , (Λ(1)− Λ(σ))gj

〉
)Ni,j=1; Ak := (−

〈
gi ,Λ

′(1)χkgj
〉
)Nij=1

I κ 7→ ‖A(κ)‖2: convex  no local min

I δ% noise: tol (in finding βk) can be chosen by default:
tol = −δ (MT: tol has to choose by hand, in order to get
good reconstruction)
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Numerical results

Note: All pictures have different color scale. No regularization at this moment!

(a)

(b) (c)

Figure: Reconstruction of conductivity change: (a) true distribution of conductivity

change; (b) a plot of
∑

k βkχk ; (c) minimizing residuum with constraint min(a, βk ).

Relative noise = 0.1% (corresponding absolute noise = 5.97× 10−5)
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Numerical results
(a)

(b) (c)

Figure: Reconstruction of conductivity change: (a) true distribution of conductivity

change; (b) a plot of
∑

k βkχk ; (c) minimizing residuum with constraint min(a, βk ).

Relative noise = 1% (corresponding absolute noise = 5.97× 10−4)
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Numerical results
(a)

(b) (c)

Figure: Reconstruction of conductivity change: (a) true distribution of conductivity

change; (b) a plot of
∑

k βkχk ; (c) minimizing residuum with constraint min(a, βk ).

Relative noise = 5% (corresponding absolute noise = 1.12× 10−3)
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Compare to MT and to different constraints

Reconstruction of conductivity change
(a) (b) (c)

(d) (e) (f)

Figure: Relative noise = 0.1%

(a) true cond
change

(b) MT:
tol = −δ

(c) MT with
better tol
manually
chosen

(d) min residuum
min(a, βk )

(e) min residuum
min(sup(σ −
1), βk )

(f) min residuum
βk .
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