2. Übungsblatt zu der Vorlesung "Analysis und Lineare Algebra für Informatiker"

Frankfurt, den 19.10.2015

Abgabetermin: 26.10.2015, 10:00 – vor der Vorlesung

- 5.) Geben Sie mit Begründung zwei nichtleere Mengen A und B sowie eine Teilmenge T von $A \times B$ an, die sich nicht als Cartesisches Produkt $T = A' \times B'$ mit $A' \subseteq A$ und $B' \subseteq B$ schreiben läßt.
 - (4 Punkte)
- 6.) Stellen Sie die folgenden Relationen $\mathcal{R} \subseteq A \times B$ graphisch dar, und entscheiden Sie mit Begründung ob es sich um eine Abbildung handelt. Gegebenenfalls ist diese Abbildung in der Form y = f(x) anzugeben.
- i) $A = B = \mathbb{R}, \ \mathcal{R} = \{(x, y) \in A \times B \mid x = y + 1\}.$
- ii) $A = \mathbb{R}, B = \mathbb{Z}, \mathcal{R} = \{(x, y) \in A \times B \mid 0 \le x y < 1\}.$
- iii) $A = B = [-1, 1], \mathcal{R} = \{(x, y) \in A \times B \mid x^2 + y^2 = 1\}.$
- iv) $A = B = \mathbb{N}, \ \mathcal{R} = \{(x, y) \in A \times B \mid y = x^2\}.$
- v) $A = B = \mathbb{N}, \mathcal{R} = \{(x, y) \in A \times B \mid x = y^2\}.$
- vi) $A = B = \{1, 2, 3, 4, 5, 6\}, \mathcal{R} = \{(x, y) \in A \times B \mid x \text{ ist ein Teiler von } y\}.$ (9 Punkte)
- 7.) Untersuchen Sie die folgenden Abbildungen auf Injektivität, Surjektivität und Bijektivität:
- i) $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 2;
- ii) $g: \mathbb{R} \to \mathbb{R}, g(x) = x^2 x;$
- iii) $h: \mathbb{N} \to \mathbb{N}, h(n) = 3n + 2.$ (3 Punkte)
- 8.) Es seien $f: A \to B$ und $g: B \to C$ Abbildungen. Beweisen Sie:
- i) Sind f und g injektiv, so ist auch $g \circ f$ injektiv.
- ii) Sind f und g surjektiv, so ist auch $g \circ f$ surjektiv.
- iii) Ist $g \circ f$ injektiv, so ist auch f injektiv.
- iv) Ist $g \circ f$ surjektiv, so ist auch g surjektiv.

(4 Punkte)