Regularization of an inverse nonlinear parabolic problem with time-dependent coefficient and locally Lipschitz source term

Tuan Nguyen Huya, Mokhtar Kiranec,d,*, Mach Nguyet Minhb

aApplied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
bDepartment of Mathematics, Goethe University Frankfurt, Germany
cLaboratoire de Mathematiques Pôle Sciences et Technologie, Université de La Rochelle, Aénie M. Crépeau, 17042 La Rochelle Cedex, France
dNonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

We consider a backward problem of finding a function u satisfying a nonlinear parabolic equation in the form $u_t + a(t)Au(t) = f(t, u(t))$ subject to the final condition $u(T) = \varphi$. Here A is a positive self-adjoint unbounded operator in a Hilbert space H and f satisfies a locally Lipschitz condition. This problem is ill-posed. Using quasi-reversibility method, we shall construct a regularized solution u_ε from the measured data a_ε and φ_ε. We show that the regularized problem are well-posed and that their solutions converge to the exact solutions. Error estimate is given.

Keywords and phrases: Nonlinear parabolic problem, Backward problem, Quasi-reversibility, Ill-posed problem, Contraction principle.

Mathematics subject Classification 2000: 35K05, 35K99, 47J06, 47H10.

1. Introduction

Let $(H, \|\cdot\|)$ be a Hilbert space with the inner product (\cdot, \cdot). Let A be a positive self-adjoint operator defined on a dense subspace $D(A) \subset H$ such that $-A$ generates a compact contraction semi-group $S(t)$ on H. Let $f : [0, T] \times H \to H$ satisfy the locally Lipschitz condition: for each $M > 0$, there exists $k(M) > 0$ such that

$$
\|f(t, u) - f(t, v)\| \leq k(M)\|u - v\| \text{ if } \max \{\|u\|, \|v\|\} \leq M.
$$

(1)

We shall consider a backward problem of finding a function $u : [0, T] \to H$ such that

$$
u_t + a(t)Au(t) = f(t, u(t)), \quad 0 < t < T,
$$

$$
u(T) = \varphi,
$$

where $a \in C([0, T])$ is a given real-valued function and $\varphi \in H$ is a prescribed final value.

This nonlinear nonhomogeneous problem is severely ill-posed. In fact, the problem is extremely sensitive to measurement errors (see, e.g., [2]). The final data is usually the result of discrete experimental measurements and is subject to error. Hence, a solution corresponding to the data does not

*Corresponding author

Email address: mokhtar.kirane@univ-lr.fr (Mokhtar Kirane)

Preprint submitted to Elsevier January 11, 2016
always exist, and in the case of existence, does not depend continuously on the given data. Thus one has to resort to a regularization.

The backward problem (2) has a long history. The linear homogeneous case \(f = 0 \) has been considered by many authors such as quasi-reversibility method \([7, 8, 6, 10, 1]\), quasi-boundary value method \([4, 5]\). The problem with constant coefficient and nonlinear source term, i.e.

\[
\begin{align*}
u_t + Au(t) &= f(t, u(t)), & 0 < t < T, \\
u(T) &= \varphi, \\
\end{align*}
\]

was studied in \([3, 12, 13, 14]\). However, in these papers, the source function \(f \) is assumed to be globally Lipschitz, that is

\[\|f(t, u) - f(t, v)\| \leq k\|u - v\|\]

where \(k \) is independent of \(t, u \). Recently, in \([15]\), a regularization method for locally Lipschitz source term has been established under an extra condition on the source term:

There exists a constant \(L \geq 0 \), such that \(\langle f(t, u) - f(t, v), u - v \rangle + \|u - v\|^2 \geq 0 \).

This condition holds for the source \(f(u) = u\|u\|^2_H \) (see \([15]\)). However, it is not satisfied in several cases, for example, \(f(u) = au - bu^3 \) \((b > 0)\) of the Ginzburg-Landau equation. Hence, another regularization method which can be applied to any locally Lipschitz source term is of interests. In this paper, we shall assume that the source term \(f \) is locally Lipschitz with respect to \(u \) (i.e. \(f \) satisfies (1)). Our main idea is approximating the function \(f \) by a sequence \(f_\varepsilon \) of Lipschitz functions

\[\|f_\varepsilon(t, u) - f_\varepsilon(t, v)\| \leq k_\varepsilon\|u - v\|\]

Then, we use the results in \([12, 14]\) to approximate problem (3) by the following problem

\[
\begin{align*}
d\nu^\varepsilon(t) + A_\varepsilon u^\varepsilon(t) &= B(\varepsilon, t)f_\varepsilon(t, u^\varepsilon(t)), & t \in [0, T], \\
u^\varepsilon(T) &= \varphi \\
\end{align*}
\]

where \(A_\varepsilon, B(\varepsilon, t) \) are defined appropriately.

When the perturbed coefficient \(a \) is time-dependent, the problems turns to be more complicated. Indeed, the strategies used for constant coefficient cannot be applied to the time-dependent coefficient case. The problem with time-dependent coefficient has been recently investigated in \([9]\). However, the methods proposed in \([9]\) can be merely applied either for zero source with perturbed time-dependent coefficient or for globally Lipschitz source with unperturbed time-dependent coefficient. We would like to emphasize that our regularization method for constant coefficient also works for unperturbed time-dependent coefficient.

The paper is organized as follows. In Section 2, we shall investigate a regularization method for the case of constant coefficient \(a \equiv 1 \). In particular, we shall give precise formulas of \(A_\varepsilon, B(\varepsilon, t) \) and \(f_\varepsilon(t, v) \); show that the regularized problem (4) is well-posed and prove the convergence of \(u^\varepsilon \) to the exact solution in \(C([0, T]; H) \) with explicit error estimates. Section 3 provides a regularization method for perturbed time-dependent coefficient \(a(t) \).
2. Regularization of backward parabolic problem with constant coefficient

2.1. The well-posedness of the regularized problem (4)

We shall first give the precise formula of the operator \(S(t) \). Assume that \(A \) is a positive self-adjoint operator in the separable Hilbert space \((H, (\cdot, \cdot)) \) and 0 is in its resolvent set. Since \(A^{-1} \) is a compact self-adjoint operator, there is an orthonormal eigenbasis \(\{\phi_n\}_{n=1}^{\infty} \) of \(H \) corresponding to a sequence of its eigenvalues \(\{\lambda_n^{-1}\}_{n=1}^{\infty} \) in which

\[
0 < \lambda_1 \leq \lambda_2 \leq ... \lim_{n \to \infty} \lambda_n = \infty.
\]

Thus \(A^{-1} \phi_n = \lambda_n^{-1} \phi_n \) and \(A \phi_n = \lambda_n \phi_n \) for each \(n \geq 1 \). The compact contraction semi-group \(S(t) \) corresponding to \(A \) is

\[
S(t)v = \sum_{n=1}^{\infty} e^{-t\lambda_n} (\phi_n, v) \phi_n, \quad v \in H.
\]

Problem (3) can be written in the language of semi-group as follows.

\[
u(t) = S(t - T) \varphi - \int_t^T S(t - s) f(s, u(s)) \, ds.
\] (5)

For each \(\varepsilon > 0 \), we define the bounded operator

\[
A_{\varepsilon}(v) = -\frac{1}{T} \sum_{n=1}^{\infty} \ln(\varepsilon + e^{-T\lambda_n})(\phi_n, v) \phi_n.
\] (6)

The compact contraction semi-group \(S_{\varepsilon}(t) \) corresponding to \(A_{\varepsilon} \) is

\[
S_{\varepsilon}(t)v = \sum_{n=1}^{\infty} \left(\varepsilon + e^{-T\lambda_n} \right)^{\frac{1}{T}} (\phi_n, v) \phi_n, \quad v \in H.
\]

Obviously, (4) can be written as

\[
u^{\varepsilon}(t) = S_{\varepsilon}(t - T) \varphi - \int_t^T S_{\varepsilon}(t - s) B(\varepsilon, s) f(\varepsilon, u^{\varepsilon}(s)) \, ds,
\] (7)

For each \(t \leq T \), define by \(B(\varepsilon, t) \) the bounded operator

\[
B(\varepsilon, t) := S_{\varepsilon}(t - T)S(T - t).
\]

The operator \(B(\varepsilon, t) \) can be written explicitly as

\[
B(\varepsilon, t)(v) = \sum_{n=1}^{\infty} (1 + \varepsilon e^{-T\lambda_n})^{\frac{1}{T} - 1} (\phi_n, v) \phi_n, \quad v \in H.
\] (8)

In particular,

\[
B(\varepsilon, t) \phi_n = S_{\varepsilon}(t - T)S(T - t) \phi_n = S_{\varepsilon}(t - T) \left(e^{-(T-t)\lambda_n} \phi_n \right)
\]

\[
= \left(\varepsilon + e^{-T\lambda_n} \right)^{\frac{1}{T}} e^{-(T-t)\lambda_n} \phi_n = (\varepsilon e^{T\lambda_n} + 1)^{\frac{1}{T}} \phi_n, \quad \forall n \geq 1.
\]

Our later calculations will be represented via operators \(S_{\varepsilon}(t) \) and \(B(\varepsilon, t) \). We shall need some upper bounds of these operators.
Lemma 1. Let $0 \leq t \leq T$. Then $S_{\varepsilon}(-t)$ and $B(\varepsilon, t)$ are bounded operators and

$$\|S_{\varepsilon}(-t)\| \leq e^{-\frac{t}{\varepsilon}}, \quad \|B(\varepsilon, t)\| \leq 1.$$

Moreover,

$$\|[B(\varepsilon, t) - I] \phi_n\| \leq \varepsilon e^{T \lambda_n}, \forall n \geq 1.$$

Proof. For each $n \geq 1$, one has

$$\|S_{\varepsilon}(t) \phi_n\| = \left(\varepsilon + e^{-T \lambda_n}\right)^{\frac{t}{2}} \leq e^{-\frac{t}{2}},$$

$$\|B(\varepsilon, t) \phi_n\| = (1 + \varepsilon e^{T \lambda_n})^{\frac{t}{2}} \leq 1$$

$$\|[I - B(\varepsilon, t)] \phi_n\| = 1 - (1 + \varepsilon e^{T \lambda_n})^{\frac{t}{2}}$$

$$\leq 1 - (1 + \varepsilon e^{T \lambda_n})^{-1} \leq e^{T \lambda_n}.$$

The desired result follows. \[\square\]

Next, we define an approximation f_{ε} of f. Recall that $f : [0, T] \times H \rightarrow H$ satisfies the locally Lipschitz condition (1):

For each $M > 0$, there exists $k(M) > 0$ such that $\|f(t, u) - f(t, v)\| \leq k(M) \|u - v\|$ if $\max\{\|u\|, \|v\|\} \leq M$.

It is obvious that the function k is increasing on $[0, \infty)$. We can choose a set $\{M_{\varepsilon} > 0\}_{\varepsilon > 0}$ satisfying

$$\lim_{\varepsilon \to 0^+} M_{\varepsilon} = \infty \quad \text{and} \quad k(M_{\varepsilon}) \leq \ln(\varepsilon^{-1})/(4T).$$

Define

$$f_{\varepsilon}(t, v) = f\left(\min\left\{\frac{M_{\varepsilon}}{\|v\|^2}, 1\right\}, v\right), \quad \forall (t, v) \in [0, T] \times H,$$

(9)

in particular $f_{\varepsilon}(t, 0) = f(t, 0)$. With this definition, we claim that f_{ε} is a Lipschitz function. In fact, we have

Lemma 2. For $\varepsilon > 0$, $t \in [0, T]$ and $v_1, v_2 \in H$, one has

$$\|f_{\varepsilon}(t, v_1) - f_{\varepsilon}(t, v_2)\| \leq k_{\varepsilon} \|v_1 - v_2\|,$$

where $k_{\varepsilon} = 2k(M_{\varepsilon}) \leq \ln(\varepsilon^{-1})/(2T)$.

Proof. Due to the continuity, it is enough to prove Lemma 2 for non-zero vectors v_1, v_2. We can assume that $\|v_1\| \geq \|v_2\| > 0$. Using the locally Lipschitz property of f, one has

$$\|f_{\varepsilon}(t, v_1) - f_{\varepsilon}(t, v_2)\| = \left\|f\left(\min\left\{\frac{M_{\varepsilon}}{\|v_1\|^2}, 1\right\}, v_1\right) - f\left(\min\left\{\frac{M_{\varepsilon}}{\|v_2\|^2}, 1\right\}, v_2\right)\right\|$$

$$\leq k(M_{\varepsilon}) \min\left\{\frac{M_{\varepsilon}}{\|v_1\|^2}, 1\right\} \|v_1 - \min\left\{\frac{M_{\varepsilon}}{\|v_2\|^2}, 1\right\} v_2\|.$$

It remains to show that

$$\min\left\{\frac{M_{\varepsilon}}{\|v_1\|^2}, 1\right\} v_1 - \min\left\{\frac{M_{\varepsilon}}{\|v_2\|^2}, 1\right\} v_2 \leq 2\|v_1 - v_2\|.$$
This inequality is trivial if \(M_\varepsilon \geq ||v_1|| \geq ||v_2|| \). When \(||v_1|| \geq ||v_2|| \geq M_\varepsilon \), one has
\[
\left\| \frac{M_\varepsilon}{||v_1||} v_1 - \frac{M_\varepsilon}{||v_2||} v_2 \right\| = M_\varepsilon \left(\left\| \frac{v_1 - v_2}{||v_1||} + \frac{||v_2|| - ||v_1||}{||v_1|| \cdot ||v_2||} \right\| \right)
\leq M_\varepsilon \left(\left\| \frac{v_1 - v_2}{||v_1||} \right\| + \frac{||v_2|| - ||v_1||}{||v_1|| \cdot ||v_2||} \right)
= \left(||v_1 - v_2|| + ||v_2|| - ||v_1|| \right) \leq 2 ||v_1 - v_2||.
\]

Finally, if \(||v_1|| \geq M_\varepsilon \geq ||v_2|| \) then
\[
\left\| \frac{M_\varepsilon}{||v_1||} v_1 - v_2 \right\| = \left\| \frac{M_\varepsilon}{||v_1||} v_1 + v_1 - v_2 \right\|
\leq \left\| \frac{M_\varepsilon}{||v_1||} v_1 \right\| + ||v_1 - v_2||
= ||M_\varepsilon - ||v_1|| + ||v_1 - v_2|| \leq 2 ||v_1 - v_2||.
\]
Here we have used the inequality \(|M_\varepsilon - ||v_1||| \leq ||v_2|| - ||v_1|| \leq ||v_1 - v_2||. \)

We now study the existence, the uniqueness and the stability of a (weak) solution of problem (4).

Theorem 1. Let \(\varepsilon > 0 \). For each \(\varphi \in H \), problem (4) has a unique solution \(u^\varepsilon \in C([0,T]; H) \). Moreover, the solutions depend continuously on the data in the sense that if \(u_j^\varepsilon \) is the solution corresponding to \(\varphi_j \), \(j = 1,2 \), then
\[
||u_j^\varepsilon(t) - u^\varepsilon(t)|| \leq e^{k_\varepsilon(T-t)||\varphi_1 - \varphi_2||} ||u_j^\varepsilon - u^\varepsilon||.
\]

Proof. Step 1: Uniqueness

Fix \(\varphi \in H \). For each \(w \in C([0,T]; H) \), define by
\[
F(w)(t) := S_\varepsilon(t-T)\varphi - \int_t^T S_\varepsilon(t-s) B(\varepsilon,s) f_\varepsilon(s,w(s)) \, ds.
\]
It is sufficient to show that \(F \) has a unique fixed point in \(C([0,T]; H) \). This fact will be proved by contraction principle.

We claim by induction with respect to \(m = 1,2,... \) that, for all \(w,v \in C([0,T]; H) \),
\[
||F^m(w)(t) - F^m(v)(t)|| \leq \left(\frac{k_\varepsilon}{\varepsilon} \right)^m \frac{(T-t)^m}{m!} ||w(s) - v(s)||, \tag{10}
\]
where \(||.|| \) is the sup norm in \(C([0,T]; H) \). For \(m = 1 \), using lemmas 1 and 2, we have
\[
||F(w)(t) - F(v)(t)|| = \left\| \int_t^T S_\varepsilon(t-s) B(\varepsilon,s) [f_\varepsilon(s,w(s)) - f_\varepsilon(s,v(s))] \, ds \right\|
\leq \int_t^T ||S_\varepsilon(t-s)|| \cdot ||B(\varepsilon,s)|| \cdot ||f_\varepsilon(s,w(s)) - f_\varepsilon(s,v(s))|| \, ds
\leq k_\varepsilon \int_t^T \varepsilon^\frac{m-1}{m} ||w - v|| \, ds \leq \frac{k_\varepsilon}{\varepsilon} \int_t^T ||w - v|| \, ds
\leq \frac{k_\varepsilon}{\varepsilon}(T-t)||w(s) - v(s)||. \]
Suppose that (10) holds for \(m = j \). We prove that (10) holds for \(m = j + 1 \). Infact, we have
\[
\left\| F^{j+1}(w)(t) - F^{j+1}(v)(t) \right\| = \left\| F(F^j(w))(t) - F(F^j(v))(t) \right\|
\]
\[
\leq \frac{k_e}{\varepsilon} \int_t^T \left\| F^j(w)(s) - F^j(v)(s) \right\| \, ds
\]
\[
\leq \frac{k_e}{\varepsilon} \int_t^T \left(\frac{k_e}{\varepsilon} \right)^j \frac{(T-s)^j}{j!} \left\| w(s) - v(s) \right\| \, ds
\]
\[
= \left(\frac{k_e}{\varepsilon} \right)^{j+1} \frac{(T-t)^{j+1}}{(j+1)!} \left\| w(s) - v(s) \right\|.
\]
Therefore (11) holds for all \(m = 1, 2, \ldots \) by the induction principle. In particular, one has
\[
\left\| F^m(w)(t) - F^m(v)(t) \right\| \leq \left(\frac{k_e T}{\varepsilon} \right)^m \frac{1}{m!} \left\| w(s) - v(s) \right\|.
\]
Since
\[
\lim_{m \to \infty} \left(\frac{k_e T}{\varepsilon} \right)^m \frac{1}{m!} = 0,
\]
there exists a positive integer number \(m_0 \) such that \(F^{m_0} \) is a contraction mapping. It follows that \(F^{m_0} \) has a unique fixed point \(u^e \) in \(C([0, T]; H) \). Since \(F^{m_0}(F(u^e)) = F(F^{m_0}(u^e)) = F(u^e) \), we obtain \(F(u^e) = u^e \) due to the uniqueness of the fixed point of \(F^{m_0} \). The uniqueness of the fixed point of \(F \) also follows the uniqueness fixed point of \(F^{m_0} \). The unique fixed point \(u^e \) of \(F \) is the solution of (7) corresponding to final value \(\varphi \).

Step 2: Continuous dependence on the data

We now let \(u_1^e \) and \(u_2^e \) be two solutions corresponding to final values \(\varphi_1 \) and \(\varphi_2 \), respectively. In the same manner as Step 1, we have for every \(w, v \in C([0, T]; H) \)
\[
\left\| F(w)(t) - F(v)(t) \right\| \leq k_e \int_t^T \varepsilon^{\frac{t-s}{T}} \left\| w(s) - v(s) \right\| \, ds.
\]
Hence
\[
\left\| u_1^e(t) - u_2^e(t) \right\| = \left\| S_e(t-T) \left(\varphi_1 - \varphi_2 \right) + F(u_1^e)(t) - F(u_2^e)(t) \right\|
\]
\[
\leq \left\| S_e(t-T) \right\| \cdot \left\| \varphi_1 - \varphi_2 \right\| + \left\| F(u_1^e)(t) - F(u_2^e)(t) \right\|
\]
\[
\leq \varepsilon^{\frac{t-T}{T}} \left\| \varphi_1 - \varphi_2 \right\| + k_e \int_t^T \varepsilon^{\frac{t-s}{T}} \left\| u_1^e(s) - u_2^e(s) \right\| \, ds.
\]
The latter inequality can be written as
\[
\varepsilon^{\frac{t}{T}} \left\| u_1^e(t) - u_2^e(t) \right\| \leq \varepsilon^{-1} \left\| \varphi_1 - \varphi_2 \right\| + k_e \int_t^T \varepsilon^{-\frac{s}{T}} \left\| u_1^e(s) - u_2^e(s) \right\| \, ds.
\]
It follows from Gronwall’s inequality that
\[
\varepsilon^{\frac{t}{T}} \left\| u_1^e(t) - u_2^e(t) \right\| \leq \varepsilon^{-1} e^{k_e(T-t)} \left\| \varphi_1 - \varphi_2 \right\|, \ t \in [0, T].
\]
This completes the proof of Theorem 1.

\(\square \)
2.2. Regularization of problem (3)

Our purpose in this section is to construct a regularized solution of the ill-posed problem (3). We mention that the existence of a solution of (3) is not considered here. Instead, we assume that there is an exact solution u corresponding to the exact datum φ, and our aim is to construct, from the given datum φ_ε approximating φ, a regularized solution U_ε which approximates u.

Denote by u^ε the solution of problem (4) corresponding to the final condition φ_ε. We shall show that for each fixed time $t > 0$, the function $u^\varepsilon(t)$ gives a good approximation of $u(t)$, where the order of approximation is $\varepsilon^{\frac{2}{T}}$. However, it is difficult to derive an approximation at $t = 0$. We therefore need an adjustment in choosing the regularized solution. The main idea is that we first use the continuity of u to approximate the initial value $u(0)$ by $u(t_\varepsilon)$ for some suitable small time $t_\varepsilon > 0$, and then approximate $u(t_\varepsilon)$ by $u^\varepsilon(t_\varepsilon)$.

Lemma 3. Let $T > 0$ and let $\varepsilon > 0$ small enough. There exists a unique $t_\varepsilon > 0$ such that $\varepsilon^{\frac{2}{T}} = t_\varepsilon$. Moreover,

$$t_\varepsilon \leq \frac{2T \ln(\ln(\varepsilon^{-1}))}{\ln(\varepsilon^{-1})}.$$

Proof. Note that each solution $t > 0$ of $\varepsilon^{\frac{2}{T}} = t$ is a zero of the function

$$h(t) = \ln(t) + \frac{\ln(\varepsilon^{-1})}{2T} t, \quad t > 0.$$

We have h is strictly increasing as $h'(t) > 0$. Moreover, $\lim_{t \to 0^+} h(t) = -\infty$ and

$$h\left(\frac{2T \ln(\ln(\varepsilon^{-1}))}{\ln(\varepsilon^{-1})}\right) = \ln\left[2T \ln(\ln(\varepsilon^{-1}))\right] > 0$$

for $\varepsilon > 0$ small enough. Thus the equation $h(t) = 0$ has a unique solution $t_\varepsilon > 0$ such that

$$t_\varepsilon \leq \frac{2T \ln\left(\ln\left(\frac{1}{\varepsilon}\right)\right)}{\ln\left(\frac{1}{\varepsilon}\right)}.$$

We have the following regularization result.

Theorem 2. Let $u \in C^1([0, T]; H)$ be a solution of problem (3) corresponding to $\varphi \in H$. Assume that

$$\sup_{t \in [0, T]} \left[\sum_{n=1}^{\infty} e^{2Tt_n} |(\phi_n, u(t_n))|^2 + \|u'(t)\|\right] = M < \infty.$$

Let φ_ε be a measured datum satisfying $\|\varphi_\varepsilon - \varphi\| \leq \varepsilon$ with $\varepsilon > 0$, and let u^ε be the solution of problem (4) corresponding to φ_ε. Choose $t_\varepsilon > 0$ as in Lemma 3. Define the regularized solution $U^\varepsilon : [0, T] \to H$ by

$$U^\varepsilon(t) = u^\varepsilon(\max\{t, t_\varepsilon\}), \quad t \in [0, T].$$

Then one has the error estimate, for $\varepsilon > 0$ small enough, $t \in [0, T]$,

$$\|U^\varepsilon(t) - u(t)\| \leq (2M + 1) \min\left\{\varepsilon^{\frac{2}{T}}, \frac{2T \ln(\ln(\varepsilon^{-1}))}{\ln(\varepsilon^{-1})}\right\}.$$
Proof. We have in view of (5)
\[u(t) = S(t - T) \varphi - \int_0^T S(t - s)f(s, u(s)) \, ds. \]

Using \(B(\varepsilon, t) = S_\varepsilon(t - T)S(T - t) \), one has
\[B(\varepsilon, t)u(t) = S_\varepsilon(t - T)\varphi - \int_0^T S_\varepsilon(t - s)B(\varepsilon, s)f(s, u(s)) \, ds. \]

We have in view of (7)
\[u_\varepsilon(t) = S_\varepsilon(t - T)\varphi_\varepsilon - \int_0^T S_\varepsilon(t - s)B(\varepsilon, s)f_\varepsilon(s, u_\varepsilon(s)) \, ds. \]

Thus
\[u_\varepsilon(t) - u(t) = S_\varepsilon(t - T)(\varphi_\varepsilon - \varphi) + [B(\varepsilon, t) - I]u(t) + \]
\[- \int_0^T S_\varepsilon(t - s)B(\varepsilon, s)[f_\varepsilon(s, u_\varepsilon(s)) - f(s, u(s))] \, ds. \]

Using Lemma 1 and noting that \(f(s, u(s)) = f_\varepsilon(s, u(s)) \) for \(\varepsilon > 0 \) small enough, \(M_\varepsilon \geq \sup_{t \in [0, T]} \|u(t)\| \), we get
\[\|u_\varepsilon(t) - u(t)\| \leq \|S_\varepsilon(t - T)\| \cdot \|\varphi_\varepsilon - \varphi\| + \|[B(\varepsilon, t) - I]u(t)\| + \]
\[+ \int_0^T \|S_\varepsilon(t - s)\| \cdot \|B(\varepsilon, s)\| \cdot \|f_\varepsilon(s, u_\varepsilon(s)) - f(s, u(s))\| \, ds \]
\[\leq e^{\|\varepsilon\|_T} \cdot \varepsilon + \varepsilon \sqrt{\sum_{n=1}^\infty e^{2\varepsilon T \lambda_n} |(\phi_n, u)|^2} + k_\varepsilon \int_0^T e^{\|\varepsilon\|_T} ||u_\varepsilon(s) - u(s)|| \, ds \]
\[\leq (M + 1)e^{\|\varepsilon\|_T} + k_\varepsilon \int_0^T e^{\|\varepsilon\|_T} ||u_\varepsilon(s) - u(s)|| \, ds. \]

The latter inequality can be written as
\[e^{-\frac{T}{2}} \|u_\varepsilon(t) - u(t)\| \leq (M + 1) + k_\varepsilon \int_0^T e^{-\frac{T}{2}} \|u_\varepsilon(s) - u(s)|| \, ds. \]

It follows from Gronwall’s inequality that
\[e^{-\frac{T}{2}} \|u_\varepsilon(t) - u(t)\| \leq (M + 1)e^{k_\varepsilon T}, \ \forall t \in (0, T]. \]
In particular, if $t \in [t_\varepsilon, T]$ then
\[
\|U^\varepsilon(t) - u(t)\| = \|u^\varepsilon(t) - u(t)\| \leq (M + 1)e^{k_T t_\varepsilon} \\
\leq (M + 1)e^{\frac{2T(M + 1)\ln(\varepsilon^{-1})}{\ln(\varepsilon^{-1})}},
\]
where we have used
\[
e^{k_T t_\varepsilon} \leq \sqrt{\ln(\varepsilon^{-1})} \leq \frac{\ln(\varepsilon^{-1})}{2T\ln(\varepsilon^{-1})} \leq t_\varepsilon^{-1} = \varepsilon^{-\frac{1}{2}} \leq \varepsilon^{-\frac{3}{4}}.
\] (11)

Let us now consider $t \in [0, t_\varepsilon]$. One has
\[
\|U^\varepsilon(t) - u(t)\| = \|u^\varepsilon(t_\varepsilon) - u(t)\| \leq \|u^\varepsilon(t_\varepsilon) - u(t_\varepsilon)\| + \|u(t_\varepsilon) - u(t)\|.
\]
Due to the continuity of u_ε, we get for ε small enough
\[
\|u(t_\varepsilon) - u(t)\| = \left\| \int_t^{t_\varepsilon} u_\varepsilon(s)ds \right\| \leq \int_0^{t_\varepsilon} \|u_\varepsilon(s)\| ds \leq Mt_\varepsilon.
\]
Thus, for $t \in [0, t_\varepsilon]$,
\[
\|U^\varepsilon(t) - u(t)\| \leq (M + 1)e^{\frac{2T\ln(\varepsilon^{-1})}{\ln(\varepsilon^{-1})}} + Mt_\varepsilon = (2M + 1)t_\varepsilon
\]
\[
\leq (2M + 1) \min \left\{ \varepsilon^{-\frac{1}{2}}, \frac{2T\ln(\varepsilon^{-1})}{\ln(\varepsilon^{-1})} \right\}.
\]
This completes the proof of Theorem 2.

3. Regularization of backward parabolic problem with time-dependent coefficient

In this section, we consider the following backward nonlinear parabolic problem with time-dependent coefficient
\[
\begin{align*}
u_t + a(t)Au(t) &= f(t, u(t)), \quad 0 < t < T, \\
u(T) &= \varphi, (12)
\end{align*}
\]
where $a \in C([0, T])$ is given. The function a is noised by the perturbed data $a_\varepsilon \in C[0, T]$ such that
\[
\|a_\varepsilon - a\|_{C([0, T])} \leq \varepsilon. (13)
\]
where the norm $\|\cdot\|_{C([0, T])}$ is given by the sup norm, i.e., $\|v\|_{C([0, T])} = \sup_{0 \leq t \leq T} |v(t)|$ for every continuous function $v : [0, T] \to \mathbb{R}$. We would like to emphasize that it is impossible to apply the technique in Section 2 to solve problem (12) when the time-dependent coefficient is perturbed by noise. Therefore, we investigate a new regularized problem as follows
\[
\begin{align*}
\frac{dv_\varepsilon(t)}{dt} + a_\varepsilon(t)\widetilde{A}_\varepsilon v_\varepsilon(t) &= f_\varepsilon(t, v_\varepsilon(t)), \quad 0 < t < 1, \\
v_\varepsilon(T) &= \varphi_\varepsilon,
\end{align*}
\] (14)

where $\widetilde{A}_\varepsilon$ is defined by
\[
\widetilde{A}_\varepsilon(\nu) := -\frac{1}{QT} \sum_{n=1}^{\infty} \ln \left(\varepsilon + e^{QT\lambda_\varepsilon} \right) \langle \nu, \phi_n \rangle \phi_n
\]

and $Q = \|a_\varepsilon\|_{C([0, T])}$.

The regularization result for time-dependent perturbed coefficient is given in the following theorem.
Theorem 3. Let \(u \in C^1([0, T]; H) \) be a solution of problem (12) corresponding to \(\varphi \in H \). Assume that
\[
\sup_{t \in [0, T]} \left(\sum_{n=1}^{\infty} e^{2QT_n} |(\phi_n, u(t))|^2 + \|u'(t)\|^2 \right) = E_Q < \infty.
\]
Let \(\varphi_e \) and \(a_e \) be measured data satisfying \(\|\varphi_e - \varphi\| \leq \varepsilon \) and \(\|a_e - a\|_{C([0, T])} \leq \varepsilon \) for \(\varepsilon > 0 \). We denote by \(v_e \) the solution of problem (14) corresponding to \(\varphi_e \) and \(a_e \). Choose \(t_e > 0 \) as in Lemma 3. Define the regularized solution \(W^e : [0, T] \rightarrow H \) by
\[
W^e(t) = v_e(\max \{t, t_e\}), \quad t \in [0, T].
\]

Then one has the following error estimate for \(\varepsilon > 0 \) small enough and \(t \in [0, T] \),
\[
\|W^e(t) - u(t)\| \leq 2E_Q \sqrt{2 \left(\frac{1}{Q} + 1 \right) e^{2T} \min \left\{ \varepsilon, \frac{2T \ln(\varepsilon^{-1})}{\ln(\varepsilon^{-1})} \right\}}.
\]

Proof. The existence of solutions to problem (12) can be proved in the same manner as Theorem 1. It remains to prove the error estimation between \(W^e \) and \(u \). To this end, we first need the error estimation between \(u_e \) and \(u \). The technique we use here is different from Theorem 2. The problem (12) can be written as
\[
\begin{aligned}
\left\{ \begin{array}{l}
u'(t) + a_e(t) \tilde{A}_e u(t) = a_e(t) \tilde{A}_e u(t) - a(t)Au(t) + f(t, u(t)), \\
u(T) = \varphi.
\end{array} \right.
\end{aligned}
\]
(16)

Recall that \(v_e \) solves the following equation
\[
\begin{aligned}
\left\{ \begin{array}{l}
v'_e(t) + a_e(t) \tilde{A}_e v_e(t) = f_e(t, v_e(t)), \\
v_e(T) = \varphi_e.
\end{array} \right.
\end{aligned}
\]
(17)

Substituting (17) into (16) bothsides, we obtain
\[
\begin{aligned}
\left\{ \begin{array}{l}
v'_e(t) - u'(t) = -a_e(t) \tilde{A}_e v_e(t) - u(t)) - a_e(t) \tilde{A}_e u(t) + a(t)Au(t) \\
v_e(T) - u_e(T) = \varphi_e - \varphi.
\end{array} \right.
\end{aligned}
\]
(18)

For \(b > 0 \), we define by
\[
\tilde{z}_e(t) := e^{b(t-T)}(v_e(t) - u(t)).
\]
By differentiating \(\tilde{z}_e(t) \) with respect \(t \) and combining to (18) gives
\[
\begin{aligned}
\tilde{z}'_e(t) &= \tilde{b}e^{b(t-T)}(v_e(t) - u(t)) + e^{b(t-T)}(v'_e(t) - u'(t)) \\
&= \tilde{b} \tilde{z}_e(t) + e^{b(t-T)} \left[-a_e(t) \tilde{A}_e v_e(t) - u(t)) + f(t, v_e(t)) - f(t, u(t)) \right] \\
&\quad - e^{b(t-T)} \left[(a_e(t) - a(t))Au(t) + a_e(t)(\tilde{A}_e - A)u(t) \right] \\
&= \tilde{b} \tilde{z}_e(t) - \tilde{A}_e \tilde{z}_e(t) + e^{b(t-T)} \left[f(t, v_e(t)) - f(t, u(t)) \right] \\
&\quad - e^{b(t-T)}(a_e(t) - a(t))Au(t) - e^{b(t-T)}a_e(t)(\tilde{A}_e - A)u(t).
\end{aligned}
\]
(19)
By taking the inner product (19) with \(z_e(t) \), we get
\[
\langle z'_e(t) + a_e(t)\overline{A}_e z_e(t) - \overline{b}z_e(t), z_e(t) \rangle = \left\langle e^{\overline{b}(t-T)} \left[f(t, v_e(t)) - f(t, u(t)) \right], z_e(t) \right\rangle
- \left\langle e^{\overline{b}(t-T)}((a_e(t) - a(t))Au(t), z_e(t)) \right\rangle
- \left\langle e^{\overline{b}(t-T)}((\overline{A}_e - A)u(t), z_e(t)) \right\rangle.
\] (20)

A direct computation implies that
\[
\frac{d}{dt}\|z_e(t)\|_H^2 = 2\langle - a_e(t)\overline{A}_e z_e(t), z_e(t) \rangle + 2\overline{b}\langle z_e(t), z_e(t) \rangle
+ 2\left\langle e^{\overline{b}(t-T)} \left[f(t, v_e(t)) - f(t, u(t)) \right], z_e(t) \right\rangle
- 2\overline{b}\langle (a_e(t) - a(t))Au(t), z_e(t) \rangle
- 2\overline{b}\langle (\overline{A}_e - A)u(t), z_e(t) \rangle.
\] (21)

where
\[
\overline{I}_1 = \langle - a_e(t)\overline{A}_e z_e(t), z_e(t) \rangle + \overline{b}\langle z_e(t), z_e(t) \rangle,
\overline{I}_2 = \left\langle e^{\overline{b}(t-T)} \left[f_e(t, v_e(t)) - f(t, u(t)) \right], z_e(t) \right\rangle,
\overline{I}_3 = -\overline{b}\langle (a_e(t) - a(t))Au(t), z_e(t) \rangle,
\overline{I}_4 = -\overline{b}\langle (\overline{A}_e - A)u(t), z_e(t) \rangle.
\]

Since \(Q = \sup_{e \in [0, T]} |a_e(t)| \), we have
\[
\left| \langle - a_e(t)\overline{A}_e z_e(t), z_e(t) \rangle \right| \leq \sup_{e \in [0, 1]} |a_e(t)\|\overline{A}_e z_e(t)\|_H\|z_e(t)\|_H
\leq \frac{Q}{ QT} \ln \left(\frac{1}{\varepsilon} \right) \|z_e(t)\|_H^2
\leq \frac{1}{ T} \ln \left(\frac{1}{\varepsilon} \right) \|z_e(t)\|_H^2,
\]
which gives
\[
\langle - a_e(t)\overline{A}_e z_e(t), z_e(t) \rangle \geq -\frac{1}{ T} \ln \left(\frac{1}{\varepsilon} \right) \|z_e(t)\|_H^2.
\]

Then the term \(\overline{I}_1 \) is estimated by
\[
\overline{I}_1 = \langle - a_e(t)\overline{A}_e z_e(t), z_e(t) \rangle + \overline{b}\langle z_e(t), z_e(t) \rangle
\geq -\frac{1}{ T} \ln \left(\frac{1}{\varepsilon} \right) \|z_e(t)\|_H^2 + \overline{b}\|z_e(t)\|_H^2.
\] (22)

Using Lemma 1 and noting that \(f(s, u(s)) = f_e(s, u(s)) \) for \(\varepsilon > 0 \) small enough, \(M_e \geq \sup_{e \in [0, T]} \|u(t)\| \), we have the following estimate
\[
\overline{I}_2 = \left\langle e^{-\overline{b}(t-T)} \left[f_e(t, v_e(t)) - f(t, u(t)) \right], z_e(t) \right\rangle
= e^{\overline{b}(t-T)}\left\langle f_e(v_e(t), t) - f_e(t, u(t)), v_e(t) - u(t) \right\rangle
\geq -k_e e^{-\overline{b}(t-T)} \|v_e(t) - u(t)\|_H^2
= -k_e\|z_e\|_H^2.
\] (23)
Thus, (21), (22), (23), (24) and (25) yields

\[\tilde{T}_3 = \langle e^{-\tilde{T}(t)}(a_e(t) - a(t))Au(t), z_e(t) \rangle \]
\[\leq e^{-2\tilde{T}(t)}|a_e(t) - a(t)|^2 \| Au(t) \|_H^2 + \| z_e(t) \|_H^2 \]
\[\leq e^{-2\tilde{T}(t)}|a_e(t) - a(t)|^2 \left(\sum_{n=1}^{\infty} |\lambda_n^2| \| u(t), \phi_n \| \right) + \| z_e(t) \|_H^2 \]
\[\leq e^{-2\tilde{T}(t)}|a_e(t) - a(t)|^2 \left(\sum_{n=1}^{\infty} \frac{1}{Q^2T^2} e^{2QT \lambda_n} |\langle u(t), \phi_n \rangle |^2 \right) + \| z_e(t) \|_H^2 \]
\[\leq \frac{e^{-2\tilde{T}(t)}e^2E_Q^2}{QT} + \| z_e(t) \|_H^2. \tag{24} \]

Employing Hölder inequality, we can bound \(\tilde{T}_4 \) as follows

\[\tilde{T}_4 = \langle e^{-\tilde{T}(t)}a_e(t)(\tilde{A}_e(t) - A(t))u(t), z_e(t) \rangle \]
\[\leq e^{-2\tilde{T}(t)}|a_e(t)|^2 \| (\tilde{A}_e - A)u(t) \|_H^2 + \| z_e(t) \|_H^2 \]
\[\leq e^{-2\tilde{T}(t)}|a_e(t)|^2 \sum_{n=1}^{\infty} \left(\frac{1}{QT} \ln \left(\frac{1}{\epsilon + e^{-QT \lambda_n}} \right) - \frac{1}{QT} \ln(e^{QT \lambda_n}) \right) |\langle u(t), \phi_n \rangle |^2 + \| z_e(t) \|_H^2 \]
\[\leq \frac{1}{T^2} e^{-2\tilde{T}(t)} e^2 \sum_{n=1}^{\infty} \ln^2 \left(e^{QT \lambda_n} + 1 \right) |\langle u(t), \phi_n \rangle |^2 + \| z_e(t) \|_H^2 \]
\[\leq \frac{1}{T^2} e^{-2\tilde{T}(t)} e^2 \sum_{n=1}^{\infty} e^{2QT \lambda_n} |\langle u(t), \phi_n \rangle |^2 + \| z_e(t) \|_H^2 \]
\[\leq \frac{1}{T^2} e^{-2\tilde{T}(t)} e^2 E_Q^2 + \| z_e(t) \|_H^2. \tag{25} \]

Thus, (21), (22), (23), (24) and (25) yields

\[\frac{d}{dt} \| z_e(t) \|_H^2 \geq \left(-\frac{2}{T} \ln \left(\frac{1}{\epsilon} \right) + 2b - 2k_e - 4 \right) \| z_e(t) \|_H^2 \]
\[-2e^{-2\tilde{T}(t)} e^2 E_Q^2 \left(\frac{1}{QT} + \frac{1}{T} \right). \tag{26} \]

Since \(b = \frac{1}{T} \ln \left(\frac{1}{\epsilon} \right) \) we obtain

\[\frac{d}{dt} \| z_e(t) \|_H^2 \geq \left(-2k_e - 4 \right) \| z_e(t) \|_H^2 - 2e^2 E_Q^2 \left(\frac{1}{QT} + \frac{1}{T} \right). \]

Integrating the above inequality from \(t \) to \(T \), we get

\[\| z_e(T) \|_H^2 - \| z_e(t) \|_H^2 \geq \left(-2k_e - 4 \right) \int_t^T \| z_e(s) \|_H^2 ds \]
\[-2e^2 E_Q^2 \left(\frac{1}{QT} + \frac{1}{T} \right) (T - t). \]
Since \(\|z_\varepsilon(T)\|_H^2 = \|\varphi_\varepsilon - \varphi\| \leq \varepsilon \), we have
\[
\|z_\varepsilon(t)\|_H^2 \leq (2k_\varepsilon + 4) \int_t^1 \|z_\varepsilon(s)\|_H^2 ds + 2E_\varepsilon^2 \varepsilon^2 \left(\frac{1}{Q} + 1 \right) + \varepsilon^2.
\]
This implies that
\[
e^{-2\tilde{b}(T-t)} \|v_\varepsilon(t) - u(t)\|_H^2 \leq (2k_\varepsilon + 4) \int_t^T e^{-2\tilde{b}(T-s)} \|v_\varepsilon(s) - u(s)\|_H^2 ds + 2E_\varepsilon^2 \varepsilon^2 \left(\frac{1}{Q} + 1 \right) + \varepsilon^2.
\]
Multiplying bothside to \(e^{2\tilde{b}T} \), we obtain
\[
e^{2\tilde{b}t} \|v_\varepsilon(t) - u(t)\|_H^2 \leq (2k_\varepsilon + 4) \int_t^T e^{2\tilde{b}s} \|v_\varepsilon(s) - u(s)\|_H^2 ds + 2E_\varepsilon^2 \left(\frac{1}{Q} + 1 \right).
\]
Applying Grönwall’s inequality, we get
\[
e^{2\tilde{b}t} \|v_\varepsilon(t) - u(t)\|_H^2 \leq 2E_\varepsilon^2 \left(\frac{1}{Q} + 1 \right) e^{(2k_\varepsilon + 4)(T-t)}.
\]
Hence
\[
\|v_\varepsilon(t) - u(t)\|_H^2 \leq 2E_\varepsilon^2 \left(\frac{1}{Q} + 1 \right) e^{(2k_\varepsilon + 4)(T-t) - \frac{T}{2} \ln\left(\frac{1}{\varepsilon} \right)}.
\]
In particular, if \(t \in [t_\varepsilon, T] \) then
\[
\|W_\varepsilon(t) - u(t)\| = \|v_\varepsilon(t) - u(t)\| \leq E_\varepsilon \sqrt{2 \left(\frac{1}{Q} + 1 \right) e^{2T} e^{k_\varepsilon T} e^{\frac{T}{2} \ln\left(\frac{1}{\varepsilon} \right) - \frac{T}{2} \ln\left(\frac{1}{\varepsilon} \right)}}
\]
where we have used (11).
Let us now consider \(t \in [0, t_\varepsilon] \). One has
\[
\|W_\varepsilon(t) - u(t)\| = \|v_\varepsilon(t_\varepsilon) - u(t)\| \leq \|v_\varepsilon(t_\varepsilon) - u(t_\varepsilon)\| + \|u(t_\varepsilon) - u(t)\|.
\]
Due to the continuity, we get for ε small enough

$$\|u(t_\varepsilon) - u(t)\| = \left\| \int_t^{t_\varepsilon} u_t(s)ds \right\| \leq \int_0^{t_\varepsilon} \|u_t(s)\| ds \leq E_Q t_\varepsilon.$$

Thus, for $t \in [0, t_\varepsilon]$,

$$\|W_\varepsilon(t) - u(t)\| \leq E_Q \sqrt{\frac{1}{Q + 1}} e^{2T \varepsilon^{2\varepsilon}} + E_Q t_\varepsilon$$

$$\leq 2E_Q \sqrt{\frac{1}{Q + 1}} e^{2T} \min\left\{ \varepsilon^{2\varepsilon}, \frac{2T \ln(\ln(\varepsilon^{-1}))}{\ln(\varepsilon^{-1})} \right\}.$$

This completes the proof of Theorem 3.

References

