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Abstract

This master study deals with constrains of mineralogical and thermal structure

of  the  moon  based  on  the  analysis  of  Love-number  and  magneto-electric

observations on the lunar surface. Therefore the thermal evolution of the moon

beginning from the moment of the complete differentiation till today has been

modeled using a 1D finite difference code. For the thermal evolution model the

parameters of thermal conductivity, heat capacity and density were taken as

temperature and partly pressure dependent, resulting in a time-dependence of

these  properties.  Furthermore,  the  convection  inside  the  moon  has  been

implemented using an effective thermal conductivity based on Nusselt number.

Melting processes and the related latent heat of iron and silicate melting were

taken  into  account  using  an  effective  heat  capacity.  The  radiogenic  heat

production  has  been  modelled  including  a  fractionation  of  incompatible

radioactive elements into a temporally growing crust. The derived selenotherm

has then been used to model  the elastic  deformation response due to the

Earth-Moon-tides in a form of the k2 Love number and the tidal dissipation

factor Q. The electrical conductivity of the lunar rocks were evaluated from the

temperature  profile  in  order  to  calculate  the  lunar  day  side  magnetometer

transfer  function.  Furthermore,  additional  electrical  conductivtity

measurements  of  lunar  analogue  materials  have  been  carried  out.  The

modelled results were compared with the observed lunar mass, moment of

inertia, k2 Love number and magnetometer transfer-function. The parameters

of mineralogical boundaries between crust/upper-mantle, upper/lower mantle

and core/mantle, the lunar minerals water content and the initial temperature

after  differentiation  were  chosen  by  applying  a  fitting  procedure  using  a

Downhill Simplex algorithm. The obtained results imply that the lunar near side

crust has a thickness of 40 ±3 km, the inter-mantle boundary lies in a depth of

930  ±14 km below the surface and the radius of  the core is  475  ±9 km.

Further the initial temperature after differentiation is found to be 2910 ±40 K.

The amount of water in the lunar minerals is about 15 ±3 ppm.
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1 Introduction

The aim of this chapter is to present the current state of research and a brief

history of the lunar thermal evolution.

1.1 The aim of this thesis

The  aim  of  this  master  thesis  is  to  find  an  answer  on  the  five  following

questions:

1. Does the Moon have a molten core?

2. Does the Moon have a partially molten lower mantle?

3. Which size does the lunar core, the upper and lower mantle and the crust

have?

4. What water content can be expected for lunar minerals?

5. What were the initial temperature conditions during the formation of the

Moon?

In order to resolve these five issues an numerical model of inversion strategy

was develloped. The derived model consists of three submodels. First of all,

the thermal evolution process of the moon is simulated from the moment of

the Moons diffrentiation till now. The derived temperature distribution is then

used for modelling an electrical conductivity and an elastic moduli profile. The

conductivity  profile  is  used  in  the  second  submodel  to  derive  the

magnetometer  transfer  function.  The  elastic  property  profile  is  used  to

calculate the lunar deformation under the influence of the Earth-Moon tides.

The  electrical  and  elastic  properties  are  not  solely  dependent  on  the

temperature distribution and the mineralogical structure but also on the water

content in lunar minerals.

The motivation behind this thesis is to clarify the above mentioned questions

regarding the contradicting results of previous works. The main contradictions

are formulated in the next paragraph.
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1.2 Current state of research

The  first  noteworthy  presentations  of  the  lunar  interior  structure  were

published in the late 1960s in the context of NASAs Apollo program. With the

availability of lunar magnetometer measurements, the focus was on linking the

electrical conductivity profile to the selenotherm. Furthermore, seismological

research have been carried out based on the lunar seismometer recordings.

Duba and Ringwood (1972) presented the interpretation of the magnetometer

observations by assuming a lunar mantle composition dominated by ortho-

pyroxene. They have compared the temperature dependent conductivity of this

mineral with the electrical conductivity structure obtained by magnetometers.

As a result they could estimate the interior temperature of the moon slightly

below  the  solidus  temperature  (~1300  K)  in  500  to  900  km  depth.

Furthermore, the existence of a metallic core has been suggested due to the

high electrical conductivity in deep regions. Olhoeft et al (1973) discussed the

difficulties  of  electrical  conductivity  measurements  of  lunar  materials  with

respect to the oxygen fugacity fO2. The mineral conductivities under strongly

reducing  conditions  on  the  Moon  can  not  therefore  be  described  by  the

measurements  under  terrestial  conditions.  Leavy  et  al  (1974) derived  a

conductivity  model  of  the Moon from magnetometer data and postulated a

practically water free lunar mineralogy judging from electrical conductivity of

pyroxenes  at  high  temperature.  Fisher  et  al  (1977) carried  out  some new

conductivity  measurements  on  lunar  samples  returned  from  the  Apollo

missions  under  low  oxygen  fugacity  conditions  and  derived  a  selenotherm

ranging up to 1500 K in the centre of the moon. Hobbs et al (1983) used the

electrical conductivity profile derived from the magnetometer data to give an

upper boundary for the lunar core radius. The result of this work indicates a

maximum radius of 435 km. Khan et al (2006) derived a numerical model to

calculate  the  tidal  deformation  of  the  Moon.  They  have choosen  the  best

possible model by variying certain parameters using a Monte Carlo inversion

algorithm. As a result they have found out that the lunar core is molten and it

is  about 350 km in size.  However,  their  results  are equivocal,  because the
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presence of a molten envelope around the core may decouple it mechanically

from the surrounding mantle.  The existence of a viscous layer in a form of

molten iron or partially molten lunar mantle surrounding the solid iron core

could provide the same effect on Love numbers. With ongoing research using

recent  data  of  the  k2 Love-numer  the  existence  of  a  lunar  core  has  been

suggested, the question of the state of the core still remains open. Khan et al

(2004) used the lunar tidal deformation measured by the lunar laser ranging

method and the lunar prospector probe to give constraits on the size and the

state of the lunar core.  Khan et al (2014) carried out an inversion similar to

the previous study, taking into account the more recent satellite measurements

of the k2 Love-number, lunar mass, moment of inertia (all from Williams et al

(2014)) and magnetometer transfer-function (from Hobbs et al (1983)). Their

aim was to find out whether a deep layer with partial melt does exist on the

lunar core-mantle boundary. As a result they proposed a ~200 km thick layer

with partial melting at the depth between 1200 and 1400 km surrounding the

Moons core. The existance of a deep partially molten layer inside the Moon has

been already postulated in a short treatise of  Williams et al  (2002).  These

authors  compared  seismic  velocities  derived  from  the  Apollo  missions

seismometers and found a strong attenuation of seismic waves in the above

mentioned  depths.  In  the  work  of  Garcia  et  al  (2014) a  preliminary  lunar

reference  model  is  presented  which  is  based  on  the  inversion  of  seismic

velocities obtained from the Apollo seismometer recordings and the additional

geodesic  observations.  They  assumed  a  homogenous  mantle  and  did  not

consider possible melt zones in the mantle. Their model indicates a core size of

about 380 km with a liquid outer core and a density of 5200 kg/m³. Finally, the

research carried out in the last 40 years could provide some constraints of the

lunar interior, but yet there are some open questions and contradicting results.

The derived selenotherms of different authors are quite differing, the question

whether the core is solid or molten is not finally resolved, and the content of

lunar  water  in  rocks  is  assumed  to  be  low,  but  this has not  yet  been

implemented in the numerical models of lunar thermal evolution, in profiles of

the electrical conductivity with depth and in lunar tidal dissipation models.
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2.1 Mineralogical Constraints

For the modeling of the thermal evolution, the tidal-elastic behaviour and the

electrical  conductivity  depth  profile  of  the  moon,  the  most  plausible

mineralogical composition is usually used. Generally, the Moon is segmented in

a anorthositic/basaltic crust, in a pyroxene-olivine mantle and in an iron alloy

core. But throughout the existing literature on the lunar structure there are

two prevalent ideas how the lunar interior may be composed. The difference

between the  two  concepts  is  whether  the  lunar  mantle  is  uniform or  it  is

divided  in  an  upper  and  a  lower  part  regarding  to  the  mineralogical

composition.  The lunar mantle subdivision from the model  of  Kuskov et  al

(2014) was  applied in  this  study.  In  the work of  Kuskov  et  al  (2014) the

inversion of seismic velocities was carried out, using a  thermodynamic mineral

phase equilibrium model for the system of  Na2O–TiO2–CaO–FeO–MgO–Al2O3–

SiO2.  Seismic velocities has been estimated from an averaging procedure of

individual mineral phases at respective pressure and temperature. The results

of their inversion are as follows: The lunar mantle is divided into a lower and

an  upper  section  with  differing

mineralogical  and  chemical

compositions.  For  the  upper

mantle the major phase is  ortho-

pyroxenes  (~76  %)  with  minor

fractions of olivin (11-14 %), clino-

pyroxene  (~9  %),  titanite  (0.45

%)  and  spinell/garnet  (1-2  %).

The lower mantle was determined

to  consist  of  olivine  (54  %)  and

clino-pyroxene       (37-40 %) as

dominant  phases  with  minor

amounts  of   garnet  (4-5  %),

ortho-pyroxene  (0-4  %)  and

Page 8

Figure  1:  Mineralogical  composition  for  the
inversion:  ■ Olivine,  ■ Al-phase (Feldspar, Spinel,
Garnet),  ■ Ortho-Pyroxene,  ■ Clino-Pyroxene,  ■
Titanite, ■ Iron-nickel-alloy

180

185

190

195

200

205



titanite (0.4 %)  (Fig. 1).

The composition of the upper lunar crust is well  determined thanks to  the

collected  samples of  NASA’s  Apollo  and  soviet  Luna  space  missions.  The

brighter regions of the surface consisting of the anorthositic material, while the

large, dark plains (so called maria) are of the basaltic origin. To account for

both,  the  crustal  composition  was  assumed  to  be  an  anorthite  rich  basalt

composed of 50 % anorthite and   50 % ortho-pyroxene. The lower parts of

the crust are assumed to consist of a so called KREEP-layer. The term KREEP

stands  for  potassium (K),  rare-earth-elements  and  phosphorus.  This  came

from the hypothesize that the lunar magma ocean after the lunar accretion and

differentiation  stages has been enriched in these incompatible elements and

ascended due to the lower density  upwards to the surface,  crystallized  and

formed a layer on the present upper mantle-crust boundary.   The still more

lighter anorthitic feldspars have been floaten up during this process, reaching

the surface and forming the upper crust. Later, in some areas of the Moons

crust  some  sporadic  volcanic  processes  and  impacts  carried  the  KREEP-

material to the surface, for example in the Mare Procellarum or the Montes

Apenninus  region.  From  both  these  sites  the  samples  were  collected  and

returned to the Earth during NASAs Apollo mission. Analysis of these samples

gave a direct evidence for the existence of the mineralogical feature of  the

KREEP-material.  For the thermal evolution model  the KREEP layer won't  be

taken into account, as it is assumed that the material behaves like pyroxenite

regarding to its  thermal properties (thermal conductivity,  heat capacity and

density) (Grimm (2013)).  

The lunar core composition still remains uncertain. While the main component

is  an iron-nickel-alloy, some small amounts up to 10 wt.-% may be lighter

elements like sulfur and/or oxygen. In this work the core is assumed to be a

pure iron-nickel-alloy neglecting the presence of light elements, even though

these components have a large influence on the physical properties like solidus

and liquidus temperatures or density of the core material. 
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2.2 Thermal evolution

The thermal evolution of the moon has been calculated by solving the time

dependent heat equation using a 1D finite difference approach. In this chapter

the  heat  equation,  boundary  conditions  and  the  pressure-temperature

dependent thermal properties will  be presented together with the numerical

discretization scheme.

2.2.1 Heat equation

The heat equation is a partial differential equation that describes the temporal

and spatial temperature change in a system over time.

∂T
∂ t

+ v⃗⋅∇ T =
1

ρ⋅cP

⋅∇(λ⋅∇ T ) +
H
cP

(1)

The first term on the left side describes the temporal change in temperature,

the second term is the advection of heat, the first term on the right side is

related  to  the  the  spatial  temperature  change  and  the  second  one  to  the

production of heat inside the system. However, this equation will be modified

to  avoid  the  calculation  of  the  convection  velocity  field  v.  The  following

paragraphs describe the modifications of the equation and the dependencies of

the containing parameters.
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2.2.2  Thermal  conductivity  and  effective  thermal

conductivity

The transfer of heat in materials can be split up in two components: conduction

and advection of heat. The conduction of heat takes place on one hand due to

thermal oscillations of atoms and on the other hand by thermal radiation. The

thermal conductivity λ quantifies both of these processes. The first term on the

right hand side of Eq. 1 accounts for this. The advection of heat takes place in

liquid media, however, also solid materials can be treated as liquids when they

show a viscous behavour. In the case of heat transfer in a system with hot

temperature at the bottom and cold temperature at the top, like in the interior

of many celestial bodies, thermal density variations creating buoyancy, forcing

the hot material to rise upwards and cold material to sink downwards due to

the thermal expansivity and density changes. This process is called convection

and it can outnumber the amount of heat transported by conduction by several

orders of magnitude.  For the process of the heat advection, the velocity field v

in Eq. 1 has to be computed by the Navier-Stokes-Equation. To quantify the

amount transported by advection without fluid-dynamic modelling, a Nusselt-

Number/Rayleigh-Number  (Nu/Ra)  relation  can  be  applied,  replacing  the

thermal  conductivity  by  an  effective  thermal  conductivity  in  Eq.  1.  The

dimensionless Rayleigh-Number (Ra) describes the vigour of convection inside

a system. It is defined as:

Ra =
g⋅α⋅ρ⋅cP⋅ΔT⋅h3

λ⋅η
(2)

where g is the gravitation acceleration,  α is the thermal expansivity,  ρ is the

density, cP is the heat capacity, ΔT is the temperature difference between the

upper and the lower boundary of the convecting layer, h is the thickness of the

convecting layer, λ is the thermal conductivity and η is the viscosity. The higher

the Rayleigh number is, the more intense is the convection process. However,

Page 11

275

280

285

290

295

300



Ra must exceed a critical Rayleigh number Rac so that convection starts to take

place.  In  the  case  of  convection  in  a  spherical  shell  the  critical  Rayleigh-

Number Rac = 1296 with no-slip boundary conditions at the surface and the

bottom (Iwase and Honda (1997)).

The  dimensionless  Nusselt-number  (Nu)  describes  the  amount  of  total

transferred heat compared to a pure conductive heat without advection. The

Nusselt number is given by

Nu =
q top⋅h

λ⋅ΔT
(3)

where qtop is the heat flow on the upper boundary of the convective layer. Nu is

always equal or greater 1. 

The  relation  between  Nu  and  Ra  can  be  obtained  from  the  numerical

modellation  of  convection  processes  at  different  values  of  Ra.  Typically  it

results in a scale law of the form:

Nu (Ra) = γ⋅Raβ (4)

The parameters for this relation were adopted from Iwase and Honda (1997).

If  the  Rayleigh-number  Ra  inside  a  system is  known,  an  effective  thermal

conductivity is given by:

λeff = λ ⋅ Nu(Ra) (5)

The  effective  thermal  conductivity  accounts  for  the  transported  heat  by

conduction and advection. This leads to the heat equation in the form:

∂T
∂ t

=
1

ρ⋅cP

⋅∇(λeff⋅∇ T ) +
H
c P

(6)
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2.2.3 Heat capacity and effective heat capacity

For the lunar crust, the upper and the lower mantle the major mineral phases

are  olivine  and  pyroxene.  The  heat  capacity  for  this  part  of  the  moon  is

composed  of  the  heat  capacity  of  these  two  phases  with  respect  to  their

fraction fi. 

c p =
f Ol

f Ol+ f Px

⋅ c P
Ol

+
f Px

f Ol+ f Px

⋅ c P
Px (7)

The  heat  capacity  of  olivine  and  pyroxene  is  calculated  as  a  function  of

temperature (Watanabe (1982)). Further it was assumed, that pressure effects

can be neglected. The heat capacity for olivine and pyroxene is given by

c P
Ol / Px

= cA + cB⋅T + cC⋅T−2
+ cD⋅T

−
1
2 + cE⋅T 2 (8)

with different coefficients cx, respectively. For the lunar core a constant heat

capacity of iron was chosen with a value of 700 J/(kg·K) (Interior Structure of

the Earth and Planets, V. N. Zharkov, p. 114).

Further,  the latent heat released by a phase transformation was taken into

account in form of an effective thermal capacity. This effective thermal capacity

enhances the normal thermal capacity cP in the temperature range between the

solidus and liquidus of a phase. cP eff is then given by 

c P eff = cP +
L

T liq−T sol
 (9)

where L is  the latent heat of fusion of  silicate or iron,  T liq and Tsol are the

liquidus and solidus temperatures, respectively. For the pyroxene-rich upper

mantle the Clapeyron-equation for liquidus and solidus were taken from Smith

et al (2003). For the lower mantle which is dominated by olivine, solidus and
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liquidus  were  taken  from  Thompson  et  al  (2000).  For  the  lunar  core  an

iron/nickel  alloy has been assumed. The corresponding liquidus and solidus

temperatures  were  adopted  from  Ahrens  et  al  (2002).  The  pressure  and

temperature dependent liquidus and solidus conditions for these phases are

shown in Fig. 2.

For the calculation of the melt fraction in different depths, a linear relation

between solidus (melt fraction zero) and liquidus (melt fraction 1 = 100%) was

assumed. 
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Figure  2:  Solidus  (solid  lines)  and liquidus  (dotted  lines)  for  Peridotite  ●,  Pyroxenite  ● and
Iron/Nickel ●.
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2.2.4 Density and elastic moduli

The density of a phase is a function of temperature and pressure, and this can

be formulated as followed:

ρ(P ,T ) = ρ0 ⋅ (1 − α⋅T +
P
K ) (10)

Where ρ0 denotes a reference density, α is the thermal expansivity and K is the

bulk modulus. α and K are both dependent on pressure and temperature, too.

For a simplification  α will be taken constant, but for the bulk modulus K the

derivatives  for  pressure  and  temperature  are  well  estimated  for  a  lot  of

individual minerals thanks to the laboratory researches. The bulk modulus K as

a function of pressure and temperature is given by:

K (P ,T ) = K0 ⋅ (1 +
∂ K
∂T

⋅T +
∂ K
∂ P

⋅P) (11)

This formulation is also applied by analogy to the shear modulus G. The values

for α, K0, G0 and the corresponding temperature and pressure derivatives can

be found in Table 8 in Appendix B. For the calculation of a mean shear- and

mean bulk-modulus of each layer the method of Hashin-Shtrikman-bounds for

elastic moduli has been chosen. This averaging method assumes an isotropic

and homogenious distribution of individual phases in a rock. Eq. 12 and Eq. 13

for  the  computation  scheme can be found in  The Rock Physics  Handbook,

Mavko et al (1998).

K+
= Δ(Gmax) K−

= Δ(Gmin)

G+
= Γ(ζ(K max ,Gmax)) G−

= Γ(ζ(K min ,Gmin))

(12)

The index +/-  denotes the upper/lower bounds for  the elastic  moduli.  The

index min/max refers to the lowest/highest modulus value of the participating
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phases. The functions Λ, Γ and ζ are explained in Eq. 13

Δ(z ) = [∑i=1

I 1

K i⋅f i +
4
3
⋅z ]

−1

−
4
3
⋅z

Γ(z ) = [∑i=1

I 1
Gi⋅f i + z ]

−1

− z

ζ(K ,G) =
G
6

⋅(9⋅K+8⋅G
K+2⋅G )

(13)

The resulting upper and lower bounds for the shear-modulus as a function of

depth will  be later  used for  the  tidal  deformation model.  Furthermore,  the

upper and lower bounds for a seimsic velocity profile will be calculated using

the following equations:

V P
+/-

= √ K +/-
+

4
3

G+/-

ρ

(14)

V S
+/-

= √ G+/-

ρ
(15)

Indices +/- correspond to the upper and lower bounds of the S- and P-Wave

velocities and elastic moduli, respectively.
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2.2.5   Lunar  mass,  moment  of  inertia,  gravitation

acceleration and pressure 

The  lunar  mass  and  the  moment  of  inertia  are  two  out  of  four  observed

quantities  that  were  chosen  for  the  inversion  (the  other  two  are  the

magnetometer  transfer  function  and  the  k2 Love  number).  The  reference

values for  the lunar mass and moment of  inertia have been adopted from

Williams et al (2014). The lunar mass m within a radius r' is calculated from

Eq. 16.

m(r ' )=∫
0

r '

4⋅ρ(r )⋅π⋅r2 dr (16)

by integration from the center r=0 to r=r'.  Integration of Eq. 16 from the

center to the surface gives the lunar mass M (Eq. 17).

M = m(r=R) (17) 

The moment of inertia I is obtained by the integration Eq. 18 from the center

to the surface.

I = ∫
0

R

2⋅π⋅r 4
⋅ρ(r )dr (18)

The non-dimensional moment of inertia is obtained according to Eq. 19.

J =
I

M⋅R2 (19)

The  profile  of  the  gravitation  acceleration  g(r)  is  calculated  as  followed  in

Eq. 20.
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g (r ) =
G⋅m(r )

r 2 (20)

The radial pressure profile P(r) is obtained by the integration of Eq. 21  from

the surface to the centre.

dP = ρ⋅g⋅dr (21)
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2.2.6 Heat production

The heat production inside the moon after the accretion stage mostly stems

from  the  decay  of  U-238,  U-235,  Th-232  and  K-40.  At  the  time  of  the

formation of the Moon 4.4 Ga ago, it was assumed that the accreted material

was chondritic. Further, it was supposed that the core formed very quickly after

the accretion, so that the thermal  evolution (cooling) model  starts  with an

already fully differentiated body at the temperature above liquidus. With the

assumption that the moon consists of the chondritic material, the initial lunar

mantle composition was enriched by the amount of U, Th and K which have not

been partitioned into the core (Dmantle/core = 0). The inital mantle concentration

at t=-4 Ga of an isotope X is then given by

[ X ]mantle
t=−4 Ga

= [ X ]chondritic
t=−4Ga

⋅
M total

M mantle
(22)

where Mtotal is the total mass of the moon and Mmantle is the mass of the mantle.

With ongoing time, the cooling process of the moon results in the formation of

a thickening crust. Due to the incompatible character of U, Th and K these

elements  tend  to  be  incorporated  into  the  crustal  material,  following  their

specific liquid-solid distribution coefficients. This leads to their enrichment in

the crust and a depletion of these elements in the mantle. The younger the

crust is formed, the higher the concentration of these elements will be. Finally,

during  the  growth  process  of  the  crust  the  concentration  of  incompatible

elements exponentially decreases with depth.
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2.2.7  Numerical  discretization  of  the  thermal  evolution

model

The  finite  difference  formulation  with  the  FTCS-scheme  (forward  in  time,

central  in  space)  for  the  heat  equation  is  done  in  spherical  coordinates,

assuming radial symmetry. This leads to the equation

T i
t+1

−T i
t

dt
=

1
ρi⋅cP eff i

⋅((λ i+
1
2

⋅r
i+

1
2

⋅
T i+1

t
−T i

t

dr ) − (λ i−
1
2

⋅r
i−

1
2

⋅
T i

t
−T i−1

t

dr )
r i

2
⋅dr

+
H i

t

cP eff i
) (23)

For solving the temperature field at the the next time step the rearrangement

results in:

T i
t+1

= T i
t
+ ( 1

ρi⋅c P eff i

⋅((λ i+
1
2

⋅r
i+

1
2

⋅
T i+1

t
−T i

t

dr ) − (λ i−
1
2

⋅r
i−

1
2

⋅
T i

t
−T i−1

t

dr )
r i

2
⋅dr

+
H i

t

cP eff i
)) ⋅dt

(24)

The upper boundary condition on the surface is a Dirichlet condition with the

fixed  temperature Tsur=273 K.  The boundary condition in  the center  of  the

moon  is  a  von-Neumann  condition  where  the  first  derivative  of  the

temperature is defined as 0. This corresponds to no heat flux into the centre (a

spherical  symmetry  requirement).  The  density,  heat  capacity  and  thermal

conductivity have been calculated every timestep. The spatial resolution of the

model  is  101  gridpoints,  leading  to  a  spacing  dr  of  approximately  17  km

between the gridpoints. The temporal resolution is calculated via the Courant

criteria, which defines the maximal possible timestep dt as follows:

dt =
dr2

2⋅κ
(25)

Because of the permanent recalculation of  ρ, cp and  λ at each time-step the
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maximal  Courant  timestep  will  be  reduced  by  a  factor  of  0.7  to  avoid  an

unwanted numerical error. So the maximum time step is given by 

dt = 0,7 ⋅
dr2

2⋅κ
(26)

In Fig. 3 a flowchart of the thermal evolution model is demonstrated.
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Figure 3: Flowchart of the thermal evolution model. Note that the term crust in
this chart doesn't refer to the mineralogical crust, but to the solidifying parts of the
initally existing molten silicate domains.
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2.3 Tidal deformation

This chapter aims to describe the tidal deformation of the moon as a result of

its orbiting around the Earth. First, in Ch. 2.3.1 tidal forces will be described in

general. In Ch. 2.3.2 the deformation of an elastic body under a tidal influence

will be discussed. In Ch. 2.3.3 the numerical approach how to calculate a tidal

deformation and Love numbers of the Moon will be presented.

 

2.3.1 Tidal forces

For celestial  bodies orbiting around a gravitational  center like in the Earth-

Moon-system  or  the  Earth-Sun-system  the  gravitational  acceleration  is

harmonically time dependent. This effect is a result of the fact that the masses

are changing their positions relative to the center of mass of the system. The

tidal acceleration is the gradient of the tidal potential. The tidal potential V
tidal

on the Moon as a result of its orbiting the Earth can be obtained by:

V tid =
Gc⋅M E

r '
=

Gc⋅M E

R
⋅

1

√1 + ( R/ r )
2

− 2⋅(R /r )⋅cos(ϵ)
(27)

where  Gc is  the  gravitation

constant  and  ME the  mass  of

the earth. The distances r, r', R

and  the  angle  epsilon  are

explained in Fig. 4.  The tidal

potential  can  also  be

expressed  in  spherical

harmonics  by  replacing  the

square  root  term  with  its

expansion  into  the  series  of

Legendre polynomials (Eq. 28).
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Figure 4: Geometry for the calculation of the tides on the
moon due to the Earths influence at any surface point O.
E and M denote the centre of mass of each object and the
angle epsilon is the angle between the line between the
centres of mass and the observation point O.
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V tid =
Gc⋅M E

r
⋅∑

n=2

∞

(R
r )

n

Pn (cos(ϵ)) (28)

The polynomial of a degree n=0 is a constant, so its gradient is zero and it can

be neglected.  The degree n=1 can also  be discarded,  because its  gradient

corresponds  to  the  centrifugal  acceleration  of  the  orbiting.  Thus,  the  tidal

potential polynomials start with the degree n=2. In this work only the degree

n=2  of  the  tidal  potential  will  be

considered. This is legitimite because

the n=2 term is responsible for about

98 % of  the tidal  potential  (Fig.  5).

The  tidal  potential  is  then  given  as

follows:

V tid =
Gc⋅M E

r
⋅(R

r )
2

⋅P2(cos(ϵ))

=
Gc⋅M E⋅R2

r 3
⋅(3

2
cos2

(ϵ)−
1
2 )

(29)

The  tidal  acceleration  is  calculated

from the  gradient  of  the  tidal  potential

Vtid:

aR =
∂V tid

∂ R
=

Gc⋅M E⋅R

r 3
⋅(3cos2

(ϵ)−1)

aθ = −
∂V tid

R⋅∂θ
=

Gc⋅M E⋅R

r3
⋅(3

2
sin(2⋅ϵ))

aλ = −
∂V tid

R⋅cos(θ)⋅∂λ
= 0

(30)

In  Fig.  6  the  resulting  acceleration  is

shown.
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Figure  5: Spherical  harmonics  -  Legendre
polynomial  P2,  on  the  poles  and  on  the
equatorial line are extremes with opposite signs.

Figure  6: Non-dimensional  tidal
acceleration vectors calculated from Eq. 30
(P2-polynomial).  The  circle  represents  the
surface of any celestial body. The orbiting
partner is on the horizontal axis far left or
right (not depicted).
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2.3.2 Tidal deformation and Love numbers

For the description of the tidal deformation of the elastic planetary body, the

dimensionless Love numbers hn, kn and ln have been introduced. The index n

refers to the spherical harmonic of the degree n. In the following text it is

assumed that the described body is of a spherical symmetry and visco-elastic.

The Love number hn describes the the radial displacement on a bodies surface

due to its tidal deformation.

d rad = hn⋅
V tid

g sur
(31)

The love number kn describes the additional gravitational potential on a bodies

surface due to its tidal-related relocation of mass:

 

V add = k n⋅V tid (32)

The love number  ln,  sometimes  called the  Shida number,  is  related  to  the

horizontal displacement on a bodies surface.

d hor = l n⋅
∇1V tid

g sur
(33)

Vtid is  thereby  the  tidal  potential  described  in  Eq.  29,  gsur is  the  surface

gravitational acceleration and ∇1 is the horizontal, spherical gradient operator.

For the analytical calculation of k2 the approach of  Remus et al (2012) was

used. In the above mentioned work the relation between the effective rigidity µ

and the k2 Love number was derived:

k 2 =
3
2
⋅

1

1+µ
(34)
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The effective rigidity of celestial body  µ can be obtained by integrating the

shear modulus G from center to surface (Zhang et al (2004)):

µ = 3⋅∫
0

1

G (s)⋅s2 ds (35)

where s = r/R is dimensionless radial coordinate. Since the tidal deformation is

not purely elastic  in nature, the shear modulus was modified to a complex

shear modulus in order to account for a non-elastic component of the planetary

body deformation or in other words an  attenuation factor for elastic waves.

Therefore, the elastic behaviour of the Moons material has been assumed to

follow a Maxwellian rheology. The Maxwell relaxation time is give by

τm =
η

G (36)

and the complex shear modulus G* is given by the expression as follows

G * =
i⋅ω⋅G

i⋅ω + τm
−1 (37)

where i denotes the imaginary unit and Omega the angular frequency of the

tidal forcing (Harada et al (2014)). The complex shear modulus was inserted in

Eq. 35 to obtain the effective complex rigidity µ. This results in a complex Love

number k2* which can be used to calculate the tidal quality factor Q, describing

the amount of energy lost per one tidal cycle. 

Q =
∣k 2 *∣

∣ℑk 2 *∣
(38)

The  essential  thing  in  this  approach  is  the  frequency  dependent  k2 Love

numbers which can be estimated from differing time-scale observation of a

gravity anomaly on the surface of a planetary body.
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2.4 Electrical conductivity

In this chapter the electical conductivity mechanisms in rocks will be shortly

discussed.  Afterwards,  the  laboratory  measurements  of  the  electical

conductivity of lunar analogue materials which have been carried out for this

study will be described. In the third part of this chapter the relation between

the  lunar  magnetometer  transfer  function  and  the  electrical  conductivity

structure of the moon is explained. At last, the numerical discretization of the

inversion problem is presented.

2.4.1 Electrical conductivity of rocks and minerals

The electrical  conductivity  of  the  Earths  minerals  is  strongly  dependent  on

temperature  and  slightly  dependent  on  pressure  (Electrical  conductivity  of

minerals and rocks, Karato & Wang,  pp. 6) Furthermore, there is  a strong

effect of water content cw on the electrical conductivity of nominally water-free

minerals. Typically, the electrical conductivity increases by  1-2 magnitudes if

nominally  water-free  olivine  is  compared  to  50  ppm water  bearing  olivine

(Treatise on Geophysics  Vol.  1,   Romanowicz  & Dziewonski,  pp.  667). The

dissolved  water  in  nominally  water-free  minerals is  mostly  in  a form  of

hydroxyl groups (OH-) or protons (H+). The temperature dependence of the

electrical conductivity of minerals follows an Arrhenian law:

σ(T ) = σ 0⋅e
−E A

k B⋅T (39)

where σ0 is the preexponential factor, kB is the Boltzmann constant and EA the

specific activation energy. The specific activation energy or enthalpy describes

an energy barrier  which the charge carriers  have to  overcome  in  order  to

transport their electrical charge to a neighboring site. These charge carriers are

linked to the prevalent charge transportation process. This can be dominated

either  by  electronic,  protonic  or  by  ionic  transport  mechanisms.  At  low
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temperatures the ionic transport mechanism via protons is dominant. At higher

temperatures  the vacancy (lattice defect)  conduction mechanism dominates

the charge transport  process  (Electrical  conductivity  of  minerals  and rocks,

Karato & Wang, pp. 7).

The electrical conductivity of rocks can be calculated by using an appropriate

averaging of individual mineral conductivities. Therefore, the Hashin-Shtrikman

method can be applied, which gives an upper and lower bound for an isotropic

multi-component material. The formulation of the Hashin-Shtrikman bounds is

as follows (Hashin & Shtrikman (1962)):

σmin /max = (∑
n=1

N f i

σn+2⋅σN
)
−1

− σN (40)

σn are the conductivities of the N phases and f i their fractions, respectivelty. To

obtain the lower bound σmin one must sort the conductivity in decreasing order

so that σN is the component with the lowest conductivity. For the upper bound

the  conductivities  has  to  be  sorted  in  increasing  order  with  σN as  the

component with the highest conductivity.

For the conductivity calculation of the different mineralogical parts of the Moon

the following phases and their dependencies were taken into account:

The lunar crust is composed of ortho-pyroxene and anorthite as described in

Ch. 2.1. For these two phases measurements with lunar analogue materials

were  carried  out  to  derive  the  electrical  conductivity  as  a  function  of

temperature. The measurements will be discussed more specific in the next

chapter.

For the upper and lower lunar mantle only the main phases olivine, ortho-

pyroxene,  clino-pyroxene  and  spinell/garnet  from  other  publications  were

taken  into  account.  Except  of  clino-pyroxene,  all  of  them  are  not  only

temperature dependent but also dependent on the water content cw.

For the lunar core the conductivity was assumed to be constant at 106 S/m (de

Koke et al (2012)).
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2.4.2  Electrical  conductivity  measurements  of  lunar

analogue materials

Two  types  of  rocks  are  typical  for  the  lunar  crust:  anorthite  and  basalt.

Anorthite  is  a  rock  dominated  by  Ca-rich  feldspars.  On  the  lunar  surface

anorthitic  zones  appear  bright.  The lunar  basalts,  the  material  of  the  dark

maria,  differ  from the  basalts  known  on  the  Earth.  The  lunar  basalts  are

strongly enriched in titanium which increases the electrical conductivity. Due to

an absence of data in literature about the electrical conductivity of anorthite

and Ti-rich basalts, laboratory conductivity measurements for these two rocks

were  carried  out.  The

measurements have been done in

a  piston  cylinder  press  (Fig.  7)

with  the  use  of  the  electrical

impedance  spectroscopy  method

at  different  temperatures  and

constant  pressures  in  order  to

derive the temperature-dependent

electical conductivity in the form of

Eq. 40. 

For the measurements process the

samples  were  milled  to  fine

powder  (~50  µm)  and  heated

inside  the  press  for   ~100  h  at

temperatures  below  their  solidus

for  sintering. The  electical

conductivtity  was  determined  in

intervals  of  40°C  over  a

temperature  range  given  in

Table 1:
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Figure 7: Measurement of the electical conductivity
in a pistion cylinder press:  1  and  2  Mo-film,
3  sample,  4  thermocouple,  5  Al2O3-ceramic,
6  graphit  heating,  7  CaF2-mantle,  8  BN-mantle,
9  BN-cap,  10  metal  core,  11  metal  piston,
12  metal  cap,  13  BN-  or  pyrophyllite,  14  copper
ring, 15 ground electrode
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The measurement of the electical conductivity has been done with alternating

current in the frequency range from 0.05 Hz to 250 kHz at 64 frequencies. The

results of the measurements are depicted in Table 2, Fig. 8 and Fig. 9.
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Table 1: Temperature range and  pressure for
the conductivity measurements.

Anorthite Troktolit

Temp. range [°C]
from 270 220

to 1300 1100

Pressure [GPa] 1.0 0.6

Table  2:  Measurement  results:  The  pre-
exponential factor S

0
 and the activation energy E

A

are only valid in the given temperature ranges.

T.-range [°C]

Anorthit
200...910 82,3 1,25

910...1300 507,8 1,39

Troktolit
200...820 0,35 0,79

820...1100 26,8 1,09

S
0
 [S/m] E

A
 [eV]

755
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Figure 9: Results of the anorthite sample measurements.

Figure 8: Results of the troktolite measurements.



2.4.3 Magnetometer measurements

During NASAs Apollo programm magnetometers were dispatched on the lunar

surface. Theses magnetometers recorded the magnetic field as a function of

time.  The external  magnetic  field  variations  penetrating the  Moons  surface

comply to a diffusion process due to induction processes. The induction results

in electrical currents, the amplitude of which depends on the conductivity of a

material. These currents again create a secondary magnetic field, which can be

observed on the surface. This process can be described by using the first three

quasi-static Maxwell equations (Eq. 41) and Ohm's law (Eq. 42).

∇×H⃗ = j⃗

∇× E⃗ = −
∂ B
∂ t

∇⋅B⃗ = 0

(41)

with  H as the magnetic field vector,  j is the current density vector,  E is the

electric field vector and B is the magnetic flux density vector.

j⃗ = σ⋅E⃗ (42)

Inserting the Eq. 42 into the first Maxell equation results in

∇×H⃗ = σ⋅E⃗ (43)

After applying the rotation operator on both sides of Eq. 43 one can equate the

result with the second Maxwell equation:

∇×(∇×H⃗ ) = σ⋅∇×E⃗ = −σ⋅
∂ B⃗
∂ t

(44)
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Assuming that the relative magnetic permeability µr=1, the relation between B

and H is B = µ0·H. Than Eq. 44 can be written as follows:

∇(∇⋅B⃗)−∇
2 B⃗ = − σ

µ0

⋅
∂ B⃗
∂ t (45)

As the third Maxwell  equation states that  the divergence of  B is  zero,  the

equation reduces to

∇
2 B⃗ = σ

µ0

⋅
∂ B⃗
∂ t (46)

Further one can transform the Eq. 46 from the time domain to the frequency

domain  by  inserting  an  harmonic  time-dependence  of  vector  B.  The  time

derivative then disappears.

∇
2
Λ⃗ = i⋅ω⋅σ⋅µ0⋅Λ⃗ (47)

ω is the angular frequency of the magnetic field variation  B and  Λ are the

Fourier  series  coefficients  of  the  magnetic  field.  Eq.  47  now  represents  a

Poisson  equation.  For  a  1D-radial  conductivity  structure  the  spherical

transformation of this equation gives

∂
2
Λ

∂ r2
− i⋅ω⋅σ(r )⋅µ0⋅Λ = 0 (48)

Typically, magnetometer transfer functions are expressed in terms of the so

called C-response:

∣C (ω)∣ =
R
2
⋅Γ(ω) (49)

with Γ(ω) as the ratio of the sum of external and induced field to external field:
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Γ(ω) = ∣Bext (ω)+Bind (ω)

Bext (ω) ∣ = ∣R
2
⋅
∂Λ(ω)

∂ r ∣
r=R

(50)

An apparent resistivity can then be calculated which can be compared to the

observed apparent resistivity.

ρA(ω) = ω⋅µ0⋅∣C (ω)∣
2

=
ω⋅µ0⋅R2

4⋅Γ2(ω)
(51)

The observed frequency-dependent apparent resistivities can be found in Ch.

2.5.2.
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2.4.4  Numerical  discretization  of  electrical  conductivity

model

For the calculation of the lunar transfer function at first the conductivity profile

of the Moon is derived from the temperature profile (calculated selenotherm)

resulted from the thermal evolution modeling. The estimation of the electrical

conductivity  from the known temperature and mineralogical  composition by

using the Hashin-Shtrickman bounds results in an upper and a lower radial

conductivity  profiles.  These  profiles  have  then  been  used  to  calculate  the

diffusion process of electromagnetic waves according to Eq. 48 for different

frequencies.  For  solving  such  a  partial  differential  equation sophisticated

boundary  conditions  have  to  be  applied.  These  conditions  are  Dirichlet

conditions  on  the  upper  and  lower  boundaries  with  defined  values  of  the

desired function Λ. For the upper boundary, the lunar surface, the value was

chosen to be  Λ=1. For the lower boundary, the magnetic field is assumed to

vanish there, and a value of Λ=0 is set, where Λ is the magnetic field strength

in the frequency domain.
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2.5 Inversion strategy

In  this  chapter  the  used  inversion  technique is  presented.  First  of  all,  the

functional principle of the Downhill Simplex algorithm is presented in Ch. 2.5.1,

then in Ch. 2.5.2 the observed and calculated parameters which need to be

fitted are described and finally the calculation and weighting of the model-

data-to-observed-data misift will be outlined.

2.5.1 Downhill Simplex algorithm

The Downhill  Simplex algorithm is an inversion technique which gets  along

without the use of partial derivatives of the misfit function with respect to the

fitting parameters in order to find a global minimum of the misfit function. This

makes it a very robust and stable inversion algorithm. The disadvantage of the

Downhill Simplex algorithm is that it converges also to local minima and that it

is  quite slow compared to other inversion techniques. The minima that are

encountered by the inversion are typically linked to the misfit value describing

the deviation of a model to the observed dataset, the above mentioned misfit

function. By repeating a series of Downhill Simplex runs with different starting

conditions a global minimum i.e. a minimal misfit  between a model and the

observations can be identified. 

The working principle of the Downhill Simplex algorithm: At the beginning of a

Downhill Simplex run a so-called simplex  has to be formed. For function with P

parameters,  P+1  parameter  combinations  are  chosen  arbitrarily.  Each

parameter combination is termed a point  Π, referring to a position in the P-

dimensional parameter space. For each point a model computation is carried

out with the corresponding parameters and a misfit-value is calculated. After

that, the algorithm enters a loop:

1. Dermination of the best Π0, the second-worst ΠP-1 and the worst point ΠP

2. Reflect (Eq. 53) the worst point at geometrical centre ΠM (Eq. 52) of the

remaining  points  giving  the  reflected  point  ΠR
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.

3. Repeat the reflection of the worst point  at  ΠM but with an expansion

factor β (Eq. 54) resulting in the point ΠE 

4. If ΠR or ΠE is better than Π0 replace Π0 by ΠR or ΠE, respectively and go

back to step 1

5. If ΠR is better than ΠP-1, replace ΠP-1 by ΠR and go back to step 1

6. Define the point ΠW as the better point between ΠR and ΠP, then move

the point ΠW towards the remaining points (contraction) giving ΠC  (Eq.

55)

7. If ΠC is better than ΠP, replace ΠP by ΠC and go back to step 1

8. Compress the simplex along all dimension towards Π0 (Eq. 56) and go

back to step 1

A repetition of this loop continues until either a convergence criteria is satisfied

or a certain number of iterations is exceeded.

The geometrical centre ΠM in step 2 and step 3 is given by

ΠM =
1
P
⋅∑

i=0

P−1

Πi (52)

The reflected point ΠR in step 2 is calculated according

ΠR = n1⋅(ΠM − ΠP) + ΠM (53)

The expanded point ΠE in step 3 is given with

ΠE = n2⋅(ΠM − ΠP) + ΠM (54)

For the contracted point ΠC the equation reads

ΠC = n3⋅(ΠM − ΠW ) + ΠW (55)
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For the compression all points Πi from i=1 to P are replaced by new points Πi
new

as followed

Πi
new

= n4⋅(Π0 − Πi) + Πi (56)

The parameters  n1,  n2,  n3 and n4 are scaling parameters  for  the reflection,

expansion, contraction and compression, respectively. There values are given

in Table 3.
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Table  3:  Coefficients  for  reflection,  expansion,  contraction  and
compression.

Parameter

Value 1 2 0.9 0.5

n
1

n
2

n
3

n
4

945

950

955

960

965

970



2.5.2 Observed data and parameters

Four observed properties were chosen to be fitted: the lunar mass, its moment

of inertia, the magnetometer transfer function and the monthly Love number

k2 related to the 27-day orbital cycle of the Earth-Moon-system. For these four

observables five parameters can be adjusted: the initial temperature of the

Moon after its accretion, the depth of the crust-mantle boundary, the depth of

the upper- to lower-mantle boundary, the radius of the lunar core and the

water content of the lunar mantle minerals.

The lunar mass and inertia:

The  lunar  mass  and  its  inertia  are  well  determined  due  to  the  numerous

astronomical observations of the orbitation of the Earth-Moon-system and the

orbitation of satellites around the Moon. The reference for the lunar mass and

the moment of inertia the values from Williams et al (2014) have been adopted

(Table 4). 

The calculated mass and moment of inertia of the model is affected by three

parameters,  namely  of  the  above  mentioned  locations  of  the  mineralogical

boundaries of crust, mantle and core. 

Magnetometer transfer-function:

For  the  reference  magnetometer  transfer  function  the  calculated  frequency

dependent apparent resistivities from Hobbs et al (1983) have been used. The

authors used the Apollo 15 surface magnetometer measurements to derive the

transfer function.   
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Table 4: Reference values.

Value Source

Williams et al (2014)

0.393112 Williams et al (2014)

M
obs 7.3463·1022 kg

J
obs

975

980

985

990

995



The calculated magnetometer transfer function is sensitive to all of the five

parameters.  The  depth  location  of  the  different  mineralogies  affects  the

conductivity as well as the temperature and the water content of the mantle

materials.

Monthly k2:

The reference value of k2 was taken from Williams et al (2014) (Table 5).

The model Love number k2 is controlled by all five parameters, too. For the

calculation of the complex shear modulus a temperature and water dependent

viscosity  of  minerals  is  used.  Further  the  unrelaxed  elastic  moduli  are

dependent on temperature. The depth location of the crust, mantle and core

boundaries with their different mineralogical compositions also influences the

rigidity of the Moon and therefore the Love number k2.
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Figure 10: Apparent resistivities from Hobbs et al (1983) based on the Apollo 15
surface magnetometer measurements.

Table 5: Reference values.

Value Source

0.02422 Williams et al (2014)k
2 obs

1000

1005

1010



2.5.3 Misfit calculation and weighting

For  the  misfit  function  between  the  observed  and  the  modeled  parameter

values a simple deviation calculation has been applied:

For the lunar mass M, the moment of inertia J and the k2 Love number the

misfit function is given as followed:

mM = √(M obs−M M )
2

M obs
2

mJ = √( J obs−J M )
2

J obs
2

mk2
= √(k 2  obs−k 2)

2

k 2  obs
2

(57)

For the magnetometer  transfer  function the logarithmic deviation has been

calculated.  This  is  because  the  transfer  function  varies  over  few orders  of

magnitudes.

mTF = ∑
n=1

N

√ [log10(TFobs (n))−log10(TF (n))]
2

[log10 (TF obs(n))]
2

(58)

Thereby  N  denotes  the  number  of  frequencies  of  the  observed  transfer

function. The overall misfit is given by the sum of all misfits:

mtot = mM + mJ + mk 2
+ mTF (59)
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In Fig. 11 the whole inversion procedure is shown as flowchart.
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Figure 11: Flowchart of the inversion process.
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2.6 Definition of Variables and Parameters
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Table 6: Table of the used variables and parameters. The red marked entries are
observed values.

Symbol Value Unit Description
α 1/K thermal expansivity
β 0.2 Nu/Ra coefficient (spherical)
γ 2.1 Nu/Ra coefficient (spherical)
η viscosity
κ thermal diffusivity
λ thermal conductivity

effective thermal conductivity
ρ density

apparent resistivity
observed apparent resistivity

σ electrical conductivity
pre-exponential factor for conductivity
pre-exponential factor for conductivity

τ Ga half life period of radioactive isotopes
ω tidal frequency

eV activation energy for conductivity
eV activation energy for conductivity
MeV decay energy of radioactive isotopes

F melt fraction
G Pa shear modulus

GPa reference shear modulus
dG/dP pressure derivative of shear modulus
dG/dT GPa/K temperature derivative of shear modulus
H heat production

specific heat production
I moment of inertia
J non-dimensional moment of inertia

observed moment of inertia (non-dim.)
K Pa bulk modulus

GPa reference bulk modulus
dK/dP pressure derivative of bulk modulus
dK/dT GPa/K temperature derivative of bulk modulus
L latent heat of fusion

kg lunar mass
kg observed lunar mass

Avogadro constant
Nu Nusselt number

Pa·s
m·s-2

W·m-1·K-1

λeff W·m-1·K-1

kg·m-3

ρA Ω·m
ρA obs Ω·m

S·m-1

σ0 S·m-1

σcw S·m-1

s-1

EA

Ecw

Edecay

G0

W·kg-1

H0 W·kg-1

kg·m2

Jobs

K0

J·kg-1

Mtotal

Mobs

N
A 6.023·1023 mol-1
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Table 7: Table of the used variables and parameters. The red marked entries are
observed values. The blue marked entries are fitting parameters.

Symbol Value Unit Description
P Pa pressure
Q tidal quality factor
R m lunar radius
R* 8.3145 gas constant
Ra Rayleigh number

1296 critical Ra
T K temperature

K initial temperature
273 K surface temperature

[X] ppm isotope concentration
ppm chondritic isotope concentration

heat capacity
effective heat capacity
coefficients for heat capacity

ppm water content of minerals
km thickness of crust
km depth of boundary upper/lower mantle

dr 1737 m radial step
dt s time step
e C electron charge
f fraction of phase
i spatial index

Love number

Boltzmann constant
r m radius

km radius of core
t Ga time

1.737·106

J·K-1·mol-1

Rac

Tini

Tsur

[X]chondrit

cP J·kg-1·K-1

cP eff J·kg-1·K-1

cX

cw

dcrust

dmantle

1.602·10-19

k2

k2 obs

kB

rcore



3 Inversion Results

Altogether,  889  Downhill  Simplex  runs  were  carried  out,  resulting  in  825

different local minima that have been found. Each Downhill  Simplex started

with differing, randomly chosen starting parameters. In the following figures

the  inversion  results  are  shown  in  2D  projections  of  the  five-dimensional

parameter space. The misfit according to Eq. 59 is color coded from red (bad)

to green (good),  with the three best models  in  blue.  Finally,  the inversion

resulted  in  a  narrow  parameter  range  corresponding  to  an  optimal  fit  of

modeled to observed data.
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Figure 12: 2D slices of the five-dimensional parameter space. Parameter P1 "inital temperature"
versus  all  other  parameters.  Each point  corresponds to  a local  minima found by  the downhill
simplex algorithm. The misfit of the models is color coded. The three best models are the blue dots.
The red dotted rectangle represent the parameter boundaries for the Downhill Simplex. The ellipses
depict the 1ϭ- and 2ϭ-environment calculated from the 15 best models.  
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Figure 13: 2D slices of the parameter space. Second parameter "P2 crust thickness" versus P3, P4
and P5.

Figure 14: 2D slice of the parameter space. Parameter P3 "upper mantle boundary" versus P4 and
P5. Parameter P4 "core radius" versus P5.



The optimal parameters to fit the model to the observed data are as follows:

On the following pages profiles of different properties are shown for the best

model.
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Table 8: Parameters of the best model.
Value

T
ini

 [K] d
crust

 [km] d
mantle

 [km] r
core

 [km] c
w
 [ppm]

2910 ±40 45 ±3 925 ±14 475 ±9 15 ±3

1080

1085

1090

1095

1100
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Figure 16: Intersection of  the temperature gradient with the solidus and liquidus of  the
different  phases.  ● Iron/Nickel,  ● Peridotite,  ● Pyroxenite.  The  dark  colored  area
corresponds to conditions above liquidus, the light colored area is below the solidus. The
area inbetween was used to calculate the melt fraction.

Figure 15: The selenotherm derived from the best model. The blue area marks the upper and
lower bounds for the selenotherm derived from Khan et al (2014), the green line is the 
mantle selenotherm from Kuskov & Krondrod (2009).
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Figure 17: Melt  fraction versus depth.  In the lower regions of the upper and the lower
mantle partial melt of up to 30%.

Figure 18: Gravitation acceleration versus radius. The reference model suggested by Garcia
et al (2014) is depicted as red line.
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Figure 19: Profiles of elastic moduli with upper and lower bounds. The blue line is the bulk-
modulus, the red line is the shear-modulus. The great difference between the upper and lower
bound for the shear-modulus corresponds to the partially molten domains.

Figure 20: Profiles for P-wave velocities with upper and lower bounds. In black/gray the
results of this study, in red the proposed upper and lower bounds from the reference model by
Garcia et al (2014), in blue the results from Khan et al (2014) and in green the results from
Kuskov et al (2014).
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Figure 21: Profiles for S-wave velocities with upper and lower bounds. In black/grey the
results of this study, in red the proposed upper and lower bounds from the reference model by
Garcia et al (2014), in blue the results from Khan et al (2014) and in green the results from
Kuskov et al (2014).

Figure 22: The black/grey area are the upper and lower bounds for the apparent resistivity
calculated in this study. The purple circles are calculated resistivities from the Apollo 15
magnetometer measurements by Hobbs et al (1983).
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Figure 23: Profile of electrical conductivity with upper and lower bounds from this study
(black/gray) and from Khan et al (2014) (blue).

Figure 24: Left axis: Concentration of radioactive elements versus radius (t = today). The
ongoing crust formation leads to a depletion of the elements in the mantle and an enrichment
in  the  crust.  Right  axis:  Heat  production  by  radioactive  elements  (t  =  today).  The
fractionation of the radioactive elements leads to strong heating in the crust.



4 Discussion

4.1 Comparision to other results

The results of the here presented inversion procedure converged to a narrow

parameter  range.  The  initial  temperature  after  differentiation  could  be

constrained to 2910 ±40 K, the thickness of the lunar crust to 45 ±3 km, the

depth of the inter-mantle boundary to 925 ±14 km, the core radius to 475 ±9

km and the water content of the lunar mantle minerals to 15 ±3 ppm. The

lunar core is found to be completely frozen. Further the model results indicate

two partially molten zones: One is located from the core-mantle boundary at

r=475 km up to r=650 km with a melt fraction up to 30 % and the other from

the inter-mantle boundary at r=800 km to r=1100 km with a melt fraction up

to 27 %. The inversion results mostly confirm the previous studies about the

lunar structure, but there are also contradictory results. Compared to the work

of  Wieczorek  (2009) the  crustal  thickness  and  inter-mantle-boundary

estimated in this work are in agreement.  Wieczorek (2009) found the lunar

crustal  thickness  on  the  day-side  to  be  about  40-45 km,  an  inter-mantle-

boundary at a depth of 900-1000 km and a lunar core to be <460 km. The

discrepancy between the core radius found in this study to the one proposed

by Wieczorek (2009) is relatively small and can be accounted to the different

approach to constrain this parameter. The core radius in this study is found via

the lunar mass, moment of inertia, magnetometer transfer-function and tidal

deformation  behaviour,  whereas  Wieczorek  (2009) used  only  lunar

seismometer data to determine it. A major disagreement between this study

and Wieczorek (2009) is the state of the core. In this study the core is found to

be completely solid, while Wieczorek (2009) proposes a solid inner and a liquid

outer core. The selenotherm derived in this study is mostly in agreement with

the mantle selenotherm found by Kuskov & Kronrod (2009). In comparision to

Khan et al (2014) the selenotherm found in this study is at least 200 K below.

Further the temperature gradient in this study increases with depth in contrast

to the work of Khan et al (2014). This shape of the selenotherm is a result of
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the Nu/Ra-relation used to mimick the mantle convection. Inside the (partial)

molten zones of the mantle convection takes place and an effective thermal

conductivity is high. This leads to a decrease of the temperature gradient in

this  partial  molten  domains  close  to  adiabatic  conditions.  In  the  overlying

zones heat can only be transported through conduction resulting in a decrease

of  the  temperature  gradient.  The  here  presented  seismic  velocities  show

deviations to the velocities presented in the very preliminary lunar reference

model  (VPREMOON) by  Garcia et  al  (2014),  to the model  from  Khan et al

(2014) and to the model of  Kuskov et al (2014) (Fig. 20 and 21). The two

partially  melted  zones  found  in  this  study  (Fig.  17)  lead  to  a  significant

decrease in P- and S-wave velocities in this domains. Futhermore, the profiles

for P- and S-wave velocities in this study are decreasing with depth in general.

The  effect  of  the  temperature  dependency  of  the  elastic  moduli  (K  and  G

decrease with higher temperatures) dominates over the pressure dependency

of  them (K and G increase with  greater  pressures).  The modelled transfer

function in a form of the frequency dependent apparent resistivities fits well

the observed transfer function published by Hobbs et al (1983). The calculated

electrical conductivity profile (Fig. 23) is in agreement with the results from

Khan et al (2014), except the region in the upper mantle and in the crust.

Khan et al (2014) propose much larger conductivity in this zones, possibly due

to  the  different  selenotherm (Fig.  15).  Fig.  24  shows  the  concentration  of

radioactive isotopes and the related heat production as a function of depth.

The calculated lunar gravitational acceleration (Fig. 18) is also in agreement

with the observed acceleration on the lunar surface. This can be expected as

the lunar mass was one of the fitted parameters. The water content of lunar

minerals found in this study is  around 15 ppm. This is  consistent with the

values provided by Karato (2013) who estimated the water content of 0.01 wt

%  for  lunar  minerals  from  both  electrical  conductivity  and  seismic  wave

attenuation.  The surface heat flow of the model is about 6 mW/m2 which is

lower than the average observed heat flow of 8 mW/m2. The reason therefore

is the low thermal gradient of the model near the surface. The application of an

insulating, porous layer of regolith with low thermal conductivity may lead to a

steeper gradient and higher heat flux in the model.
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4.2 Simplifications and neglected aspects

During the development of the models some simplifications and neglections

were  made.  One  point  is,  that  the  models  were  designed  for  the  one-

dimensional spherical case to save the computation time and to allow a great

number of Downhill Simplex runs to be done. However, the nature of the moon

is  non-spherically  three-dimensional  which  can  be  already  observed  by

comparing the near-side with the far-side or the brighter and darker surface

areas. Nethertheless, the one-dimensional approach seems to be legitimite as

far  as  we  assume  that  with  an  increasing  depth  the  mineralogical

heterogeneities and non-spherical character of mineralogical discontinuities are

vanishing. Another point that could be further improved in the model are the

fixed  (not  time-dependent)  crust/mantle,  inter-mantle  and  core-mantle

boundaries during the model run. Convective processes, which were modelled

by an effective thermal conductivity, not only transport heat but also may lead

to a redistribution of minerals. This time-dependant mineralogy was not taken

into account in the present study. Further, the melting of mantle and crustmay

lead to some changes in the mineralogical composition profile.
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5 Outlook

The here presented technique of a joint inversion of mass, moment of inertia,

electrical  and  elastical  properties  of  the  Moon  successfully  converged  to  a

narrow area of physical parameters by fitting the model to the observed data.

With respect to some issues that could be further refined, the models also can

be applied to other celestial bodies. Especially in the context of the current

space missions "New Horizons" or "Cassini Huygens" the presented approach

could bring new insights to the Galilean moons, asteroid belt objects and trans

neptunian objects and provide some constraints to their interior structure. 
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Appendix A

In the following the numerical codes are listed.
Legend: Comments

Functions
External Data

downhillstart.m (Script)
(modified version from Prof. Dr. H. Schmeling)

% Downhill Simplex Inversion - 5 parameters

format shortE

clear all

close all

% definitions

 nparam = 5;           % No of parameters to invert

npoints = nparam+1;    % No of points in the parameter space

  alpha = 1.;          % parameter for reflexion

   beta = 0.9;         % parameter for contraction

  gamma = 2;           % parameter for expansion

% Parameter

   Tini0  = 2500;   % Initial temperature

   dTini0 = 100;

  dcrust0 = 50;   % Thickness of crust

 ddcrust0 = 10;

 dmantle0 = 750;   % Depth of lower/upper mantle boundary

ddmantle0 = 25;

   rcore0 = 200;       % Core radius

  drcore0 = 15;

      cw0 = 10;        % Water content of minerals

     dcw0 = 0.5;

   rangeS = 12;        % coarse variation (outer loop)

   range  = 0.07;      % fine variation (inner loop)

    ifin2 = 20;        % number of outer loops

     ifin = 30;        % number of inner loops

    

for irun2=1:1:ifin2

    if irun2>1

       Tini0 = Tini0*(1+(randi([(-rangeS) (rangeS)]))/100);

       dcrust0 = dcrust0*(1+(randi([(-rangeS) (rangeS)]))/100);

       cw0 = cw0*(1+(randi([(-rangeS) (rangeS)]))/100);

       dmantle0 = dmantle0*(1+(randi([(-rangeS) (rangeS)]))/100);

       rcore0 = rcore0*(1+(randi([(-rangeS) (rangeS)]))/100);

    end;

for irun=1:ifin

q = irun  

    Tini = Tini0*(1+range*(rand-0.5)); 

   dTini = dTini0*(1+range*(rand-0.5));

  dcrust = dcrust0*(1+range*(rand-0.5));

 ddcrust = ddcrust0*(1+range*(rand-0.5));

 dmantle = dmantle0*(1+range*(rand-0.5));
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ddmantle = ddmantle0*(1+range*(rand-0.5));

   rcore = rcore0*(1+range*(rand-0.5));    

  drcore = drcore0*(1+range*(rand-0.5));

      cw = cw0*(1+range*(rand-0.5));     

     dcw = dcw0*(1+range*(rand-0.5));

% Starting parameters, they should not be equal 0!

P0(1,:) =           [ Tini, dcrust, dmantle, rcore, cw];

P0(2,:) = P0(1,:) + [dTini,      0,       0,     0,  0];

P0(3,:) = P0(1,:) + [    0,ddcrust,       0,     0,  0];

P0(4,:) = P0(1,:) + [    0,      0,ddmantle,     0,  0];

P0(5,:) = P0(1,:) + [    0,      0,       0,drcore,  0];

P0(6,:) = P0(1,:) + [    0,      0,       0,     0,dcw];

% Termination parameters

    eps = 0.01;     % Misfit better than eps

epsconv = 1e-6;     % Difference between subsequent norm of all normalized parameters

   nmax = 1000;     % Maximum iterations

%Initializing several parameters

       ii = 0;

icompress = 1;

   P0last = 999;

converged = 0;

% Initial misfit

for i=1:npoints

    mf(i) = 1e6;

end

% Downhill loop starts

while min(mf) > eps && ii < nmax && converged == 0

    

% Misfit of new points in parameter space

if icompress == 1

   for i=1:npoints

      [mf(i),P0(i,:),mall]=inv_start(P0(i,:));

   end

end

icompress = 0;

% which has the worst, best fit?

[C,imax]=max(mf);

[C,ibest]=min(mf);

% which has the second worst fit?

mfreduced=mf;

mfreduced(imax)=[];

[C,imax2]=max(mfreduced);

% Centre of all points excluding the worst point

Pcentre=(sum(P0(:,:))-P0(imax,:))/(npoints-1);

% Mirror the worst point w.r.t centre

Pmir=Pcentre+(Pcentre-P0(imax,:))*alpha;
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% Misfit of mirrored point

[mfmir,Pmir,mall]=inv_start(Pmir);

% Reflected point better than all others?

if mfmir < min(mf) 

    % expand mirrired point

    Pmirexp=Pcentre+(Pcentre-P0(imax,:))*gamma;

    [mfmirexp,Pmirexp,mall]=inv_start(Pmirexp);

    % if better this is the new point, else dont expand, take the mirrored point as new point

    if mfmirexp < mfmir

        Pnew = Pmirexp;

        mfnew = mfmirexp;

        dhcontrol='expanded, wrst pt --> best';

    else

        Pnew = Pmir;

        mfnew = mfmir;

        dhcontrol='reflected, wrst pt --> best';

    end

% Reflected point better than second worst point? Then this is still the new point

elseif mfmir < mf(imax2)

    Pnew = Pmir;

    mfnew = mfmir;

    dhcontrol='reflected2nd, wrst pt --> better';

else

    % Contraction: first define worst point, either old worst or reflected

    Pwrst = P0(imax,:);

    if mfmir < mf(imax)

       Pwrst = Pmir;

    end

    % Contraction; Move worst point to half way towards centre point

    Pwrst = Pwrst+(Pcentre-Pwrst)*beta;

    [mfPwrst,Pwrst,mall] = inv_start(Pwrst);

    % if this improves its fit use it and start with it as new point

    if mfPwrst < mf(imax)

        Pnew = Pwrst;

        mfnew = mfPwrst;

        dhcontrol='contract wrst pt';

    else

        % Compression: Move all points half way towards the best point

        icompress = 1;

        for i = 1:npoints

            P(i,:) = (P0(i,:)+P0(ibest,:))/2;

        end

        dhcontrol='compress simplex';

    end

end

% Write the new points (either only Pnew or the compressed points) to P0

if icompress == 0

    % The other points are kept, only the worst is improved

    P0(imax,:)=Pnew;

    mf(imax) = mfnew;

else

    % All points compressed towards the best point

    P0=P;

end

% Output and termination?

diff=(norm(P0)-P0last)/P0last;
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P0last=norm(P0);

disp([num2str([irun ii]) ' ' num2str(mf(ibest)) ' , ' num2str(P0(ibest,:)) ' , ' num2str(diff) ', '

dhcontrol])

disp(' ')

ii = ii+1;

if abs(diff) < epsconv

    converged = 1

end

end

[mffinal,P0(ibest,:),mall] = inv_start(P0(ibest,:));

Pfin(((irun2-1)*ifin+irun),:) = [P0(ibest,:),mffinal,mall];

dlmwrite('P.txt',Pfin);

end

end;

disp('Pfin and misfit')

disp(Pfin)

    

inv_start.m (Function)

function [misfit,P,misfall] = inv_start(P)

% Function to start the models

%-----------------------------------------------------------------

  steps = 101;        % model resolution

      R = 1737000;    % lunar radius

      r = linspace(0,R,steps);

     dr = ceil((r(2)-r(1))/1000); 

     Rm = R/1000;

if P(1) < 1800       ; P(1) = 1800      ;end

if P(1) > 3800       ; P(1) = 3800      ;end

if P(2) < 2*dr       ; P(2) = 2*dr      ;end

if P(2) >100         ; P(2) = 100       ;end

if P(4) < 2*dr       ; P(4) = 2*dr      ;end

if P(4) > 400        ; P(4) = 400       ;end

if P(3) < P(2)+2*dr  ; P(3) = P(2)+2*dr ;end

if P(3) > Rm-P(4)-2*dr;P(3)=Rm-P(4)-2*dr;end

if P(5) < 0.1        ; P(5) = 0.1       ;end

if P(5) > 50         ; P(5) = 50        ;end

   Tini = P(1);    dcrust = P(2);     dmantle = P(3);

  rcore = P(4);        cw = P(5);

  

     rx = [dcrust*1000,dmantle*1000,R-rcore*1000];

     Tp = load('mt_periods.txt')';

     Tp = 10.^Tp;

      N = size(Tp,2);

% Models

[VARa,VARb,VARc,VARd] = sel_start(Tini,rx,r,R,steps);

  [Tf1,Tf2,HShi,HSlo] = mt_start(steps,rx,VARa(2,:),cw,Tp,N);

               [k2,Q] = tid_start(steps,R,VARa(1,:),VARa(2,:),VARa(7,:),VARa(6,:),VARa(15:16,:),...

          ...VARc,cw,VARa(17,:));

        [m1,m2,m3,m4] = inv_misfit(VARc,Tf1,Tf2,k2);

               misfit = m1+m2+m3+m4;

              misfall = [m1,m2,m3,m4];
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inv_misfit.m (Function)

function [m1,m2,m3,m4] = inv_misfit(VARc,Tf1,Tf2,k2)

% Function to calculate the misfit

%-----------------------------------------------------------------

 Mlit = 7.34767309*10^22; % Reference mass

 Ilit = 0.3928; % Reference intertia

k2lit = 0.024; % Reference k2

   tf = load('mt_transferfunction.txt');

   tp = tf(:,1);

 rhoa = tf(:,2);

    N = size(tp,1);

  Tf1l = log10(Tf1);

  Tf2l = log10(Tf2);

   Tfa = (Tf1l+Tf2l)/2;

 rhoal = log10(rhoa);

 for i=1:1:N

     mfa(i) = sqrt((rhoal(i)-Tfa(i+5)).^2)/rhoal(i);

 end;

m1 = sqrt((VARc(1)-Mlit)^2)/Mlit;

m2 = sqrt((VARc(2)-Ilit)^2)/Ilit;

m3 = sum(mfa)/N;

m4 = sqrt((k2-k2lit)^2)/k2lit;

sel_start.m (Function)

function [VARa,VARb,VARc,phase] = sel_start(Tini,rx,r,R,steps)

% Function containing the thermal evolution model

%-----------------------------------------------------------------

 tmax = 4400;                               % model runtime

 Ma2s = 60*60*24*365*10^6;                  % Ma in seconds conversion

 tmax = tmax*Ma2s;                      

 Tsur = 273;                                % surface temperature

   rx = R-rx;   

   dr = r(2)-r(1);  

    t = 0;

    P = (-1.59*(r*10^-6).^2+4.798)*10^9;    % initial pressure estimation

    g = linspace(0,1.6,steps);              %    "    gravity      "

phase = [0,0,0,0,0,0,0,0];

   pr = zeros(1,steps); 

 rho0 = load('sel_rho0.txt');               % density raw-data

alpha = load('sel_alpha.txt');              % thermal expansivity data

modul = load('sel_kmodul.txt');             % elastic modulus and derivatives (P,T) data 

            

 [s,up,lo,cmb] = sel_composition(r,rx,steps); 

             T = sel_adiabat(Tini,g,s,cmb,dr);

[Kt,K,G,K2,G2] = sel_elasticity(s,T,P,modul,phase,pr,up,lo,cmb,steps,0);

           rho = sel_density(s,P,T,alpha,rho0,Kt,steps);

            cp = sel_heatcapacity(s,P,T,steps,lo,cmb); 

[lam,phase,pr] = sel_heatconductivity(T,P,g,cp,lo,cmb,dr,steps);

  [g,M,I,P,mr] = sel_gravity(rho,r,dr,steps);

    [H,C,Hdat] = sel_radiodistribution(mr,0,cmb,0,0,0,tmax,steps);

             k = lam./(rho.*cp);             % heat diffusivity

          kmax = max(k);                     % max. value of k

            dt = round(dr^2/(2*kmax)*0.25);  % max. size of timestep

         icalc = 10;  Icalc = 10;            % parameter calculation timestepping

         jcalc = 2;   Jcalc = 2;
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      T(steps) = Tsur;

          VARb = [cmb,lo,up,Ma2s,steps,R,Tsur,Tini];

while t<=tmax  % Time loop start

      t = t+dt;         

    for i=2:1:steps-1

        Tnew(i-1) = T(i)+dt*(((k(i+1)+k(i))/2)*((r(i+1)+r(i))/2)^2*(T(i+1)-T(i))-((k(i-1)+k(i))/2)*...

    ...((r(i-1)+r(i))/2)^2*(T(i)-T(i-1)))/(r(i)^2*dr^2)+dt*H(i)/cp(i);

    end;  

     T(2:steps-1) = Tnew;                                

             T(1) = T(2);

    if jcalc>Jcalc         

       [H,C,Hdat] = sel_radiodistribution(mr,phase(6),cmb,C,Hdat,t,tmax,steps); 

               cp = sel_heatcapacity(s,P,T,steps,lo,cmb); 

   [lam,phase,pr] = sel_heatconductivity(T,P,g,cp,lo,cmb,dr,steps); 

                k = lam./(rho.*cp);

             kmax = max(k);  

               dt = round(dr^2/(2*kmax)*0.9);

            jcalc = 1;

    end;           

    if icalc>Icalc

   [Kt,K,G,K2,G2] = sel_elasticity(s,T,P,modul,phase,pr,up,lo,cmb,steps,0);

              rho = sel_density(s,P,T,alpha,rho0,Kt,steps);

        [g,M,I,P] = sel_gravity(rho,r,dr,steps);

            icalc = 1;

    end;

        icalc = icalc+1;

        jcalc = jcalc+1;

end;  

[Kt,K,G,K2,G2] = sel_elasticity(s,T,P,modul,phase,pr,up,lo,cmb,steps,1);

VARa = [r;T;lam;rho;cp;g;P;H;C;K;K2;G;G2;pr];

VARc = [M,I,up,lo,cmb,t];

sel_adiabat.m (Function)

function T = sel_adiabat(Tini,g,s,cmb,dr)

% Function to calculate the adiabate

%-----------------------------------------------------------------

load sel_alpha.txt;

    T = zeros(1,size(s,1));

 T(1) = Tini;

alpha = zeros(1,size(s,1));

    a = sel_alpha; 

for i=1:1:size(s,1);

    if i<=cmb

    cp(i) = 1200;

   rho(i) = 3000;

    else

    cp(i) = 600;

   rho(i) = 6000;

    end;

end;

for i=1:1:size(s,1)-1

    alpha(i) = (s(i,1)*(s(i,2)*a(2)+s(i,3)*a(3))+s(i,4)*(s(i,5)*a(5)+s(i,6)*a(6))...

       ...+s(i,7)*(s(i,8)*a(8)+s(i,9)*a(9))+s(i,10)*(s(i,11)*a(11)+s(i,12)*a(12)...       

               ...+s(i,13)*a(13))+s(i,14)*(s(i,15)*a(15)+s(i,16)*a(16)+s(i,17)*a(17))...   

       ...+s(i,18)*(s(i,19)*a(19)+s(i,20)*a(20)+s(i,21)*a(21)+s(i,22)*a(22))...

               ...+s(i,23)*(s(i,24)*a(24)+s(i,25)*a(25))+s(i,26)*(s(i,27)*a(27)))/100;
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    dT = alpha(i)*g(i)*T(i)*dr/cp(i);

    T(i+1) = T(i)+dT;

end;

T = fliplr(T);

sel_composition.m (Function)

function [s,up,lo,cmb] = sel_composition(r,rx,steps)

% Function to initialize the mineralogical composition

%-----------------------------------------------------------------

s0 = load('sel_min.txt');

for i=1:1:steps

    if r(i)<=rx(3)

       s(i,:) = s0(4,:);

       cmb = i;

    end;

    if r(i)>rx(3) && r(i)<=rx(2)

       s(i,:) = s0(3,:);

       lo = i;

    end;

    if r(i)>rx(2) && r(i)<=rx(1)

       s(i,:) = s0(2,:);

       up = i;

    end;

    if r(i)>rx(1)

       s(i,:) = s0(1,:);

    end;

end;    

sel_density.m (Function)

function rho = sel_density(s,P,T,a,r0,Kt,steps)

% Function to link density(P,T) to mineralogy

%-----------------------------------------------------------------

T0 = 273.15;

dT = T-T0;

for i=1:1:steps

    rol(i) = s(i,2)*(r0(2)*(1-a(2)*dT(i))*(1+P(i)/Kt(i,1))) + s(i,3)*(r0(3)*...

...(1-a(3)*dT(i))*(1+P(i)/Kt(i,1)));

    rfs(i) = s(i,5)*(r0(5)*1/(1-a(5)*(T(i)-T0)+20*a(5)*(sqrt(T(i))-sqrt(T0)))) + ...

...s(i,6)*(r0(6)*1/(1-a(6)*(T(i)-T0)+20*a(6)*(sqrt(T(i))-sqrt(T0))));

    rsp(i) = s(i,8)*(r0(8)*(1-a(8)*dT(i))*(1+P(i)/Kt(i,7))) + s(i,9)*(r0(9)*...

...(1-a(9)*dT(i))*(1+P(i)/Kt(i,7)));

    rgt(i) = s(i,11)*(r0(11)*(1-a(11)*dT(i))*(1+P(i)/Kt(i,10))) + s(i,12)*(r0(12)*...

...(1-a(12)*dT(i))*(1+P(i)/Kt(i,10))) + s(i,13)*(r0(13)*(1-a(13)*dT(i))*(1+P(i)/Kt(i,10)));

    rop(i) = s(i,15)*(r0(15)*(1-a(15)*dT(i))*(1+P(i)/Kt(i,14))) + s(i,16)*(r0(16)*...

...(1-a(16)*dT(i))*(1+P(i)/Kt(i,14))) + s(i,17)*(r0(16)*(1-a(16)*dT(i))*(1+P(i)/Kt(i,14)));

    rcp(i) = s(i,19)*(r0(19)*(1-a(19)*dT(i))*(1+P(i)/Kt(i,18))) + s(i,20)*(r0(20)*...

...(1-a(20)*dT(i))*(1+P(i)/Kt(i,18))) + s(i,21)*(r0(21)*(1-a(21)*dT(i))*(1+P(i)/Kt(i,18)))...

... + s(i,22)*(r0(22)*(1-a(22)*dT(i))*(1+P(i)/Kt(i,18)));

    rti(i) = s(i,24)*(r0(24)*(1-a(24)*dT(i))*(1+P(i)/Kt(i,23))) + s(i,25)*(r0(25)*...

...(1-a(25)*dT(i))*(1+P(i)/Kt(i,23)));

    rfe(i) = s(i,27)*(r0(27)*(1-a(27)*dT(i))*(1+P(i)/Kt(i,26)));

    rho(i) = (rol(i)*s(i,1)+rfs(i)*s(i,4)+rsp(i)*s(i,7)+rgt(i)*s(i,10)+rop(i)*s(i,14)+...

...rcp(i)*s(i,18)+rti(i)*s(i,23)+rfe(i)*s(i,26))*10;

end;
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sel_elasticity.m (Function)

function [Kt,Kup,Gup,Klo,Glo] = sel_elasticity(S,T,P,k,phase,part,up,lo,cmb,steps,q)

% Function to link shear- and bulk-modulus(P,T) to mineralogy

%-----------------------------------------------------------------

for i=1:1:steps

      Kol(i) = ((k(1,1)-k(2,1)*T(i))*10^9+k(3,1)*P(i));

      Gol(i) = ((k(4,1)-k(5,1)*T(i))*10^9+k(6,1)*P(i));

      

      Kpl(i) = ((k(1,4)-k(2,4)*T(i))*10^9+k(3,4)*P(i));

      Gpl(i) = ((k(4,4)-k(5,4)*T(i))*10^9+k(6,4)*P(i));

      

      Ksp(i) = ((k(1,7)-k(2,7)*T(i))*10^9+k(3,7)*P(i));

      Gsp(i) = ((k(4,7)-k(5,7)*T(i))*10^9+k(6,7)*P(i));

      

      Kgt(i) = ((k(1,10)-k(2,10)*T(i))*10^9+k(3,10)*P(i));

      Ggt(i) = ((k(4,10)-k(5,10)*T(i))*10^9+k(6,10)*P(i));

      

      Kop(i) = ((k(1,14)-k(2,14)*T(i))*10^9+k(3,14)*P(i));

      Gop(i) = ((k(4,14)-k(5,14)*T(i))*10^9+k(6,14)*P(i));

      

      Kcp(i) = ((k(1,18)-k(2,18)*T(i))*10^9+k(3,18)*P(i));

      Gcp(i) = ((k(4,18)-k(5,18)*T(i))*10^9+k(6,18)*P(i));

      

      Kti(i) = ((k(1,23)-k(2,23)*T(i))*10^9+k(3,23)*P(i));

      Gti(i) = ((k(4,23)-k(5,23)*T(i))*10^9+k(6,23)*P(i));

      

      Kfe(i) = k(1,26)*10^9;

      Gfe(i) = k(4,26)*10^9;

end;

S = S/100;

o = zeros(steps,1);

Kt = [Kol',o,o,Kpl',o,o,Ksp',o,o,Kgt',o,o,o,Kop',o,o,o,Kcp',o,o,o,o,Kti',o,o,Kfe',o];

if q==1

for i=steps:-1:up

    Kup(i) = 1/(S(i,4)/(Kpl(i)+4/3*Gti(i))+S(i,14)/(Kop(i)+4/3*Gti(i))+S(i,23)/...

...(Kti(i)+4/3*Gti(i)))-4/3*Gti(i);

    Klo(i) = 1/(S(i,4)/(Kpl(i)+4/3*Gpl(i))+S(i,14)/(Kop(i)+4/3*Gpl(i))+S(i,23)/...

...(Kti(i)+4/3*Gpl(i)))-4/3*Gpl(i);

    zup(i) = Gti(i)/6*(9*Kti(i)+8*Gti(i))/(Kti(i)+2*Gti(i));

    Gup(i) = 1/(S(i,4)/(Gpl(i)+zup(i))+S(i,14)/(Gop(i)+zup(i))+S(i,23)/(Gti(i)+zup(i)))-zup(i);

    zlo(i) = Gpl(i)/6*(9*Kpl(i)+8*Gpl(i))/(Kpl(i)+2*Gpl(i));

    Glo(i) = 1/(S(i,4)/(Gpl(i)+zlo(i))+S(i,14)/(Gop(i)+zlo(i))+S(i,23)/(Gti(i)+zlo(i)))-zlo(i);

end;

for i=up:-1:lo

    Kup(i) = 1/(S(i,1)/(Kol(i)+4/3*Gsp(i))+S(i,7)/(Ksp(i)+4/3*Gsp(i))+S(i,14)/(Kop(i)+4/3*Gsp(i))...

...+S(i,18)/(Kcp(i)+4/3*Gsp(i))+S(i,23)/(Kti(i)+4/3*Gsp(i)))-4/3*Gsp(i);

    Klo(i) = 1/(S(i,1)/(Kol(i)+4/3*Gop(i))+S(i,7)/(Ksp(i)+4/3*Gop(i))+S(i,14)/(Kop(i)+4/3*Gop(i))...

...+S(i,18)/(Kcp(i)+4/3*Gop(i))+S(i,23)/(Kti(i)+4/3*Gop(i)))-4/3*Gop(i);

    zup(i) = Gsp(i)/6*(9*Ksp(i)+8*Gsp(i))/(Ksp(i)+2*Gsp(i));

    Gup(i) = 1/(S(i,1)/(Gol(i)+zup(i))+S(i,7)/(Gsp(i)+zup(i))+S(i,14)/(Gop(i)+zup(i))+S(i,18)/...

...(Gcp(i)+zup(i))+S(i,23)/(Gti(i)+zup(i)))-zup(i);

    zlo(i) = Gop(i)/6*(9*Kol(i)+8*Gop(i))/(Kol(i)+2*Gop(i));

    Glo(i) = 1/(S(i,1)/(Gol(i)+zlo(i))+S(i,7)/(Gsp(i)+zlo(i))+S(i,14)/(Gop(i)+zlo(i))+S(i,18)/...

...(Gcp(i)+zlo(i))+S(i,23)/(Gti(i)+zlo(i)))-zlo(i);

end;
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for i=lo:-1:cmb

    Kup(i) = 1/(S(i,1)/(Kol(i)+4/3*Ggt(i))+S(i,10)/(Kgt(i)+4/3*Ggt(i))+S(i,14)/(Kop(i)+4/3*Ggt(i))...

...+S(i,18)/(Kcp(i)+4/3*Ggt(i))+S(i,23)/(Kti(i)+4/3*Ggt(i)))-4/3*Ggt(i);

    Klo(i) = 1/(S(i,1)/(Kol(i)+4/3*Gop(i))+S(i,10)/(Kgt(i)+4/3*Gop(i))+S(i,14)/(Kop(i)+4/3*Gop(i))...

...+S(i,18)/(Kcp(i)+4/3*Gop(i))+S(i,23)/(Kti(i)+4/3*Gop(i)))-4/3*Gop(i);

    zup(i) = Ggt(i)/6*(9*Kgt(i)+8*Ggt(i))/(Kgt(i)+2*Ggt(i));

    Gup(i) = 1/(S(i,1)/(Gol(i)+zup(i))+S(i,10)/(Ggt(i)+zup(i))+S(i,14)/(Gop(i)+zup(i))+S(i,18)/...

...(Gcp(i)+zup(i))+S(i,23)/(Gti(i)+zup(i)))-zup(i);

    zlo(i) = Gop(i)/6*(9*Kol(i)+8*Gop(i))/(Kol(i)+2*Gop(i));

    Glo(i) = 1/(S(i,1)/(Gol(i)+zlo(i))+S(i,10)/(Ggt(i)+zlo(i))+S(i,14)/(Gop(i)+zlo(i))+S(i,18)/...

...(Gcp(i)+zlo(i))+S(i,23)/(Gti(i)+zlo(i)))-zlo(i);

end;

for i=cmb:-1:1

    Kup(i) = Kfe(i);

    Klo(i) = Kfe(i);

    Gup(i) = Gfe(i);

    Glo(i) = Gfe(i);

end;

if phase(2)>0

for i=phase(2):1:phase(3)

    Gup(i) = Gup(i)+part(i)/(1/(-Gup(i))+(2*(1-part(i))*(Kup(i)+2*Gup(i)))/(5*Gup(i)*(Kup(i)+...

...4/3*Gup(i))));

    Glo(i) = (1-part(i))/(1/(Gup(i))+(2*(part(i))*Klo(i))/(5*Gup(i)*Kup(i)));

end;

end;

if phase(4)>0

for i=phase(4):1:phase(5)

    Gup(i) = Gup(i)+part(i)/(1/(-Gup(i))+(2*(1-part(i))*(Kup(i)+2*Gup(i)))/(5*Gup(i)*(Kup(i)+...

...4/3*Gup(i))));

    Glo(i) = (1-part(i))/(1/(Gup(i))+(2*(part(i))*Klo(i))/(5*Gup(i)*Kup(i)));

end;

end;

if phase(6)>0

for i=phase(6):1:phase(7)

    Gup(i) = 0;

    Glo(i) = 0;

end;

end;

else

Gup = 0; Kup = 0; Glo = 0; Klo = 0;    

end;

sel_gravity.m (Function)

function [g,M,I,P,mr] = sel_gravity(rho,r,dr,steps)

% Function to calculate gravitation acceleration, masss, pressure and interia

%----------------------------------------------------------------------------

    G = 6.67384*10^-11;

    g = zeros(1,steps);

    P = zeros(1,steps);

   mr = zeros(1,steps);

    m = 4/3*pi*r(1)^3*rho(1);

    j = 0;

mr(1) = m;

for i=2:1:steps

    g(i) = G*m/r(i)^2;
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   mr(i) = 4/3*pi*(r(i)^3-r(i-1)^3)*rho(i);

       m = m+mr(i);

       j = j+8/15*pi*(r(i)^5-r(i-1)^5)*rho(i);

end;

for i=steps-1:-1:1

    P(i) = P(i+1)+(rho(i+1)+rho(i))/2*g(i)*dr;

end;

M = m;

I = j/(M*r(steps)^2);

sel_heatcapacity.m (Function)

function cp = sel_heatcapacity(S,P,T,steps,lo,cmb)

% Function to calculate (eff.) heat capacity

%-----------------------------------------------------------------

Ti = linspace(1,4000,4000);

cpol = (87.36+0.08717.*Ti-3.699e6.*Ti.^-2+843.6.*Ti.^(-0.5)-2.237e-5.*Ti.^2)/0.1407;

cppx = (264.8+9.46e-4.*Ti-12.958e6.*Ti.^-2)/0.21655;

cpfe = 700;

Lfe = 2*10^5;

Lpx = 4*10^5;

Lpe = 4*10^5;

[PPx,PPe,PFe] = sel_phase(P,steps); 

for i=1:1:steps

      tot = S(i,1)+S(i,14)+S(i,18)+S(i,26);

    cp(i) = S(i,1)/tot*cpol(round(T(i)))+(S(i,14)+S(i,18))/tot*cppx(round(T(i)))+S(i,26)/tot*cpfe;

if i<cmb

if T(i)>=PFe(i)-10 && T(i)<=PFe(i)+10;

   cp(i) = cp(i)+Lpe/20;

end;

end;   

if i>=cmb && i<lo

if T(i)>=PPe(1,i) && T(i)<=PPe(2,i);

   cp(i) = cp(i)+Lpe/(PPe(2,i)-PPe(1,i));

end;

end;

if i>=lo

if T(i)>=PPx(1,i) && T(i)<=PPx(2,i);

   cp(i) = cp(i)+Lpx/(PPx(2,i)-PPx(1,i));

end;

end;        

end;

    

sel_heatconductivity.m (Function)

function [lam,phase,part] = sel_heatconductivity(T,P,g,cp,lo,cmb,dr,steps)

% Function to calculate (eff.) heat conductivity and melt fraction

%-----------------------------------------------------------------

  [PPx,PPe,PFe] = sel_phase(P,steps); 

              A = 0.73;

              B = 1293;

              C = 0.034*10^-9;  

           lam0 = (A+B./(77+T)).*(exp(C*P));% Wärmeleitfähigkeit Mantel, Gradient mit der Tiefe

           lamc = 0.001;                    % Temperaturkoeff. der Wärmeleitfähigkeit

    lam0(1:cmb) = 50;                       % Wärmeleitfähigkeit Eisen
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         lammax = 150;                      % max. conductivity (numerical reasons)

            aMa = 2.1;                      % Koeffizient Mantel

            bMa = 0.2;                      % Exponent Mantel

          RacMa = 1296;                     % kritische Rayleighzahl Mantel

      threshold = 0.3; 

         alphaM = 2.8*10^-5;

           rhoM = 3300; 

part = zeros(1,steps);      bot = zeros(1,3);         top = zeros(1,3);

for i=1:1:cmb

    if T(i)>PFe(i)        part(i) = 1;    

    if bot(1)==0           bot(1) = i;   

    end;

    top(1) = i;

    lam0(i) = lammax;

    end;

end;

for i=cmb+1:1:lo

    if T(i)>=PPe(1,i)     part(i) = (T(i)-PPe(1,i))/(PPe(2,i)-PPe(1,i));   

    if bot(2)==0           bot(2) = i;   

    end;

    top(2) = i;

    end;

    if part(i)>1          part(i) = 1; 

    end;

end;

for i=lo+1:1:steps

    if T(i)>=PPx(1,i)     part(i) = (T(i)-PPx(1,i))/(PPx(2,i)-PPx(1,i));   

    if bot(3)==0           bot(3) = i;   

    end;

    top(3) = i;

    end;

    if part(i)>1          part(i) = 1; 

    end;

end;

lam = lam0;

f = [0,0];

n=0;

if bot(3)>0                             % Nusselt-Zahl oberer Mantel

   for i=bot(3):1:top(3)

   f(1) = f(1)+part(i);

      n = n+1;

   end;

   f(1) = f(1)/n;

   mid1 = round((bot(3)+top(3))/2);

   etaM = 10^18;

    Ra1 = g(mid1)*alphaM*rhoM^2*cp(mid1)*(T(bot(3))-T(top(3)))*(abs(bot(3)-top(3))*dr)^3/(5*etaM); 

    Nu1 = aMa*(abs(Ra1/RacMa))^bMa;

    if f(1)<threshold

    Nu1 = Nu1*(f(1)/threshold)^2;

    end;

   if Nu1<1

      Nu1 = 1;

   end;

   for i=bot(3):1:top(3)

 lam(i) = lam0(i)*Nu1;

   end;

else

    Nu1 = 1;
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end;

n=0;

if bot(2)>0                             % Nusselt-Zahl oberer Mantel

   for i=bot(2):1:top(2)

   f(2) = f(2)+part(i);

      n = n+1;

   end;

   f(2) = f(2)/n;

   mid2 = round((bot(2)+top(2))/2);

   etaM = 10^18;

    Ra2 = g(mid2)*alphaM*rhoM^2*cp(mid2)*(T(bot(2))-T(top(2)))*(abs(bot(2)-top(2))*dr)^3/(3*etaM);

    Nu2 = aMa*(abs(Ra2/RacMa))^bMa;

   if f(2)<threshold

    Nu2 = Nu2*(f(2)/threshold)^3;

   end;

   if Nu2<1

      Nu2 = 1;

   end; 

   for i=bot(2):1:top(2)

 lam(i) = lam0(i)*Nu2;

   end;   

else

    Nu2 = 1;

end;

phase = [0,top(1),bot(1),top(2),bot(2),top(3),bot(3),Nu1,Nu2];

sel_phase.m (Function)

function [PhasePx,PhasePe,PhaseFe] = sel_phase(P,steps)

% Function containing the phase-diagramm for mantle/core

%-----------------------------------------------------------------

 GPa = 10^9;

for i=1:1:steps

        if P<2.25*GPa

        PhasePe(2,i) = 1700+77.8/(GPa)*P(i);

        else

        PhasePe(2,i) = 1780+42.14/(GPa)*P(i);

        end;

        if P<2.5*GPa

        PhasePe(1,i) = 1150+108/(GPa)*P(i);

        else

        if P<3.7*GPa

        PhasePe(1,i) = 1000+162.16/(GPa)*P(i);    

        else

        PhasePe(1,i) = 1275+89.75/(GPa)*P(i);

        end;

        end;

        

        PhasePx(2,i) = 1153+150/GPa*P(i);

        PhasePx(1,i) = 1073+106.7/GPa*P(i);

        

        PhaseFe = 800/(17*10^9)*P+1800;

end;    
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sel_radiodistribution.m (Function)

function [H,C,Hdat] = sel_radiodistribution(m,bot,cmb,C,Hdat,t,tmax,steps)

% Function to calculate heat production and distribute rad. elements

%-------------------------------------------------------------------

Ga2s = 3600*24*365*10^9;

D = 15;

ppm = 10^-6;

  %  Oberflächenkonz., Anteil ,Chondrit, HW-Zeit, Wärmeproduktion[W/kg]

   A = [    3.2 , 0.0073 ,   0.02 ,  0.70  , 5.75*10^-4,235,4.40  ;   % U238

            3.2 , 0.9927 ,   0.02 ,  4.47  , 9.17*10^-5,238,4.27  ;   % U235

          11.0 , 1      ,   0.08 , 14.00  , 2.56*10^-5,232,4.08 ;   % Th

        24100.0 , 0.00012, 240.00 ,  1.28  , 3.48*10^-9, 40,1.35 ];   % K40 

faraday = 96485;

A(:,5) = A(:,7)*(log(2))*faraday./A(:,6)./(A(:,4)*Ga2s)*10^9;

A(:,3) = A(:,3)*ppm;

if t==0

   Mcore = sum(m(1:cmb));

   Mmantle = sum(m(cmb+1:steps));

   C = zeros(4,steps);

   M = sum(m);

   for i=1:1:4

       cm(i) = A(i,2)*A(i,3)*M/Mmantle;

       C(i,cmb+1:steps) = cm(i);

       mrad(i) = cm(i)*Mmantle;

   end;

   mold = zeros(1,4);

   Hdat = [mrad,mold,cm,steps];

end;

if t>0

if Hdat(13)-bot>=2   

   mrad = Hdat(1:4);

   mold = Hdat(5:8);

   cm = Hdat(9:12);

   top = Hdat(13); 

   Mmantle = sum(m(cmb+1:bot));

   Mcrust = sum(m(bot+1:top));

   for i=1:1:4

       cc(i) = cm(i)*D;

       mcrust(i) = cc(i)*Mcrust;

       mold(i) = mold(i)+mcrust(i);

       mmantle(i) = mrad(i)-mold(i);

       if mmantle(i)<0

          mmantle(i)=0;

       end;

       cm(i) = mmantle(i)/Mmantle;

       C(i,bot+1:top) = cc(i);

       C(i,cmb+1:bot) = cm(i);

   end;

   Hdat = [mrad,mold,cm,bot];

end;

end;

for i=1:1:4

   H0(i,:) = A(i,5)*C(i,:)*0.5^((t-tmax)/Ga2s/A(i,4));

end;

H = sum(H0,1);
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mt_start.m (Function)

function [Tf1,Tf2,HShi,HSlo] = mt_start(steps,rx,T,cw,Tp,N)

% Function to calculate magnetometer transfer function

%-----------------------------------------------------------------

steps = 1001;

   cw = cw*10^-6;

    R = 1737000;

   rx = R-rx;

    r = linspace(R,0,steps);

   dr = r(1)-r(2);

    w = 2*pi./Tp;

  mu0 = 4*pi*10^-7; 

    T = fliplr(T);

[HSlo,HShi,index] = mt_conductivity(steps,r,rx,T,cw);

for j=1:1:2

    if j==1    

        s = (HShi);

    else

   s = (HSlo);

    end;

    M = sparse(steps-2,steps-2); 

 for n=1:1:N   

 for i=1:1:steps-2

     M(i,i) = -2/dr^2 -1i*w(n)*mu0*s(i+1)+2/r(i+1)^2;

     if i>1   

   M(i,i-1) = 1/dr^2;

     end;

     if i<steps-2   

   M(i,i+1) = 1/dr^2;

     end;

 end;

 B = sparse(steps-2,1);

 B(1,1) = -1/dr^2;

 G = sparse(steps,1);

 G(2:steps-1,1) = M\B;

 G(1,1) = 1;

 for i=1:1:steps

 if i==1

    gam(i) = r(1)/2*(G(2,1)-G(1,1))/dr;

 end;

 if i>1 && i<steps

    gam(i) = r(1)/2*(G(i+1,1)-G(i-1,1))/(2*dr);

 end;

 if i==1

    gam(i) = r(1)/2*(G(steps,1)-G(steps-1,1))/dr;

 end;

 end;    

 rhoa(n) = w(n)*mu0*r(1)^2/(4*(abs(gam(2)))^2);

 end;

if j==1

   Tf1 = rhoa;

else

   Tf2 = rhoa;

end;

end;
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mt_conductivity.m (Function)

function [HSlo,HShi,index] = mt_conductivity(steps,r,rx,T2,cw)

% Function link electrical conductivity to mineralogy

%-----------------------------------------------------------------

Rc = 8.3145/1000;

 k = 8.617e-5;

 R = 1737000;

r2 = linspace(R,0,size(T2,2));

 T = interp1(r2,T2,r);              % interpolate T

for i=1:1:steps

     sol(i) = 10.^2.4*exp(-154/(Rc*T(i)))+10.^3.1*(cw.^0.62)*exp(-87/(Rc*T(i)));

    sopx(i) = 10.^2.4*exp(-147/(Rc*T(i)))+10.^2.6*(cw.^0.62)*exp(-82/(Rc*T(i)));

    scpx(i) = 10.^3.8*exp(-1.73/(k*T(i)));

     sgt(i) = 10.^2.5*exp(-128/(Rc*T(i)))+10.^2.9*(cw.^0.63)*exp(-70/(Rc*T(i)));

    shyp(i) = 120.3*exp(-0.18./(k*T(i)));

    stro(i) = 0.35*exp(-0.79./(k*T(i)));

    sano(i) = 507.76*exp(-1.39./(k*T(i)));

    shyp = stro;

end;

M = load('sel_min.txt');

M = M/100;

for i=steps:-1:1

    if r(i)<=rx(3)

        HShi(i) = 100;

        HSlo(i)= 100;

        index(1) = i;

    end;

    if r(i)>rx(3) && r(i)<=rx(2) q = 3;

        HShi(i) = 1/(M(q,1)/(sol(i)+2*sgt(i))+M(q,4)/(sgt(i)+2*sgt(i))+M(q,12)/(sopx(i)+2*sgt(i))+...

...M(q,16)/(scpx(i)+2*sgt(i)))-2*sgt(i);

        HSlo(i)= 1/(M(q,1)/(sol(i)+2*scpx(i))+M(q,4)/(sgt(i)+2*scpx(i))+M(q,12)/(sopx(i)+2*scpx(i))+...

...M(q,16)/(scpx(i)+2*scpx(i)))-2*scpx(i);

        index(2) = i;

    end;

    if r(i)>rx(2) && r(i)<=rx(1)-(R-rx(1))/2 q = 2;        

        HShi(i) = 1/(M(q,1)/(sol(i)+2*sgt(i))+M(q,4)/(sgt(i)+2*sgt(i))+M(q,12)/(sopx(i)+2*sgt(i))+...

...M(q,16)/(scpx(i)+2*sgt(i)))-2*sgt(i);

        HSlo(i)= 1/(M(q,1)/(sol(i)+2*scpx(i))+M(q,4)/(sgt(i)+2*scpx(i))+M(q,12)/(sopx(i)+2*scpx(i))+...

...M(q,16)/(scpx(i)+2*scpx(i)))-2*scpx(i);

        index(3) = i;

    end;

    if r(i)>rx(1)-(R-rx(1))/2 && r(i)<=rx(1) q = 1;        

        HShi(i) = 1/(M(q,1)/(sol(i)+2*stro(i))+M(q,4)/(sano(i)+2*stro(i))+M(q,12)/(stro(i)+2*stro(i))+...

...M(q,16)/(scpx(i)+2*stro(i)))-2*stro(i);

        HSlo(i)= 1/(M(q,1)/(sol(i)+2*sano(i))+M(q,4)/(sano(i)+2*sano(i))+M(q,12)/(stro(i)+2*sano(i))+...

...M(q,16)/(scpx(i)+2*sano(i)))-2*sano(i);

        index(4) = i;

    end;

    if r(i)>rx(1) q = 1;

        HShi(i) = 1/(M(q,1)/(sol(i)+2*shyp(i))+M(q,4)/(sano(i)+2*shyp(i))+M(q,12)/(shyp(i)+2*shyp(i))+...

...M(q,16)/(scpx(i)+2*shyp(i)))-2*shyp(i);

        HSlo(i)= 1/(M(q,1)/(sol(i)+2*sano(i))+M(q,4)/(sano(i)+2*sano(i))+M(q,12)/(shyp(i)+2*sano(i))+...

...M(q,16)/(scpx(i)+2*sano(i)))-2*sano(i);

    end;    

end;
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tid_start.m (Function)   
       
function [k2,Q] = tid_start(steps,R,r,T,P,g,Ghl,VARc,cw,f)

% Function to calculate k2 and Q-factor

%-----------------------------------------------------------------

     G = sum(Ghl,1)/2;

     V = 4/3*pi*R^3;           

  rho0 = VARc(1)/V;  

   eta = tid_visc(P,T,cw);

etaliq = 5*10^16;

   eta = ((1./eta.*(1-f))+(1./etaliq*f)).^-1;

for i=1:1:VARc(5)-1  

if f(i)==0

eta(i) = 10^18;

else

eta(i) = 10^-3;

end;

end;

        w = 2*pi/(3600*24*365);

G_complex = 1i*w*G./(1i*w+G./eta);

s = r/R;

       ds = s(2)-s(1);

    Gmean = 0;

for i=1:1:steps

    Gmean = Gmean+3*G_complex(i)*s(i)^2*ds;

end;

     Gbar = (19/2*Gmean/(rho0*R*g(steps)));

       k2 = 1.5/(1+Gbar);

Q = log10(abs(abs(k2)/imag(k2)));

       k2 = abs(k2);

     

tid_visc.m (Function)   

function eta = tid_visc(P,T,cw)

% Function to calculate viscosity for maxwell-relaxation

%-----------------------------------------------------------------

  e = 10^-16;

  A = 90;

  H = 480000;

  V = 11*10^-6;

  n = 3.5;

  r = 1.2;

coh = 16.2*cw;

  R = 8.3145;

eta = e^((1-n)/n)*A^(-1/n)*coh^(-r/n)*(exp(-(H+P*V)./(R*T))).^(-1/n)*10^6;
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Appendix B – Parameter values

Thermal  expansivity  α,  shear-  and  bulk-modulus  (G  and  K)  and  their

temperature and pressure derivatives for different minerals.

Chondritic concentration of elements [X], fraction of isotope x, decay energy

Edecay and half-life period τ of radioactive isotopes.

Parameters for the electrical conductivity calculation of minerals.
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Table 8: Elastic moduli and their derivatives were taken from Duffy & Anderson (1989). Values for
thermal expansivity stems from Robertson (1988).

Phase dK/dP dK/dT [GPa/K] dG/dP dG/dT [GPa/K]

Olivin 3.1 129 5.1 0.016 82 1.8 0.013

Clino-Pyroxene 3.2 104 5.0 0.012 77 2.0 0.012

Ortho-Pyroxene 2.7 113 4.5 0.013 67 1.7 0.010

Anorthite 4.9 80 5.0 0.020 45 1.6 0.012

Spinell 2.4 174 4.9 0.019 114 1.8 0.014

Garnet 2.8 175 4.9 0.019 95 1.6 0.013

Titanite 2.5 120 5.0 0.010 70 1.5 0.010

α [10-5 K-1] K
0
 [GPa] G

0
 [GPa]

Table 9

Isotope x τ [Ga]

U-238 0.02 0.9927 4.27 4.47

U-235 0.02 0.0073 4.40 0.70

Th-232 0.08 1 4.00 14.00

K-40 240 0.00012 1.35 1.28

[X]
chondrit

 [ppm] E
decay

 [MeV]

Table 10

Phase Source

Olivin 251.2 154 kJ/mol 1258.9 87 0.62 Dai & Karato (2009)

Ortho-Pyroxene 249.3 147 kJ/mol 398.1 82 0.62 Dai & Karato (2009)

Garnet 316.2 128 kJ/mol 794.3 70 0.63 Dai & Karato (2009)

Clino-Pyroxene 6309.6 1.73 eV Yang et al (2011)

σ
0
 [S/m] E

A
σ

cw
 [S/m] E

cw
 [kJ/mol] r

cw
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The mineralogical composition of the crust and the mantle provided by Kuskov

et al (2014).
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Table 11: Mineralogical composition. Depth location boundaries z1 and z2 are given
in  km.  Solid  colored  values  are  in  %.  Light  colored  values  are  fractions  of  the
individual minerals composition.

z1 z2 Ol Fo Fa Al-phasePlag AFS Gross Pyr Alm AlSp FeSp
0 50 0 0 0 50 0,95 0,05 0 0 0 0 0

50 100 11,73 0,84 0,16 1,92 0 0 0 0 0 0,6 0,4
100 200 12 0,84 0,16 1,65 0 0 0 0 0 0,63 0,37
200 300 12,6 0,84 0,16 1,47 0 0 0 0 0 0,65 0,36
300 400 14 0,85 0,15 0,88 0 0 0,08 0,6 0,32 0 0
400 500 14,03 0,85 0,15 0,92 0 0 0,05 0,7 0,25 0 0
500 750 54,05 0,92 0,08 4,18 0 0 0,04 0,8 0,16 0 0
750 1000 54,67 0,91 0,09 4,61 0 0 0,04 0,8 0,16 0 0

1000 1387 54,42 0,91 0,09 4,43 0 0 0,04 0,8 0,16 0 0
z1 z2 Opx Enst Diop Ferro Cpx Enst Diop Ferro Hede Tit Ilm Gei

0 50 49,6 0,85 0 0,15 0 0 0 0 0 0,4 0,88 0,13
50 100 77,06 0,84 0 0,16 8,87 0,12 0,44 0,31 0,13 0,42 0,88 0,13

100 200 76,45 0,83 0 0,17 9,45 0,18 0,53 0,1 0,2 0,45 0,84 0,16
200 300 76,45 0,82 0,02 0,16 9,47 0,24 0,44 0,1 0,22 0,42 0,76 0,24
300 400 76,29 0,8 0,05 0,15 8,39 0,3 0,4 0,1 0,2 0,43 0,68 0,32
400 500 78,9 0,78 0,04 0,18 5,72 0,33 0,33 0,14 0,2 0,43 0,56 0,44
500 750 4,3 0,85 0,05 0,1 37,1 0,36 0,32 0,1 0,22 0,37 0,4 0,6
750 1000 1,76 0,85 0,05 0,1 38,59 0,39 0,32 0,1 0,19 0,38 0,35 0,65

1000 1387 0 0 0 0 40,78 0,42 0,3 0,1 0,18 0,38 0,28 0,72

2330


