6. Übungsblatt zu der Vorlesung

"Diskrete und Numerische Mathematik für Informatiker"

Frankfurt, den 17.5.2016

Abgabetermin: 24.5.2016, 12:00 – vor der Vorlesung

21.) Betrachten Sie die Alphabete $A = \{\alpha, \beta, \gamma, \delta\}$, $B = \{0, 1\}$ sowie den Präfix-Code $c: A \to B^*$, gegeben durch

$$c(\alpha) := 0, c(\beta) := 10, c(\gamma) := 110, c(\delta) := 1110.$$

- i) Unter welchen notwendigen und hinreichenden Bedingungen ist ein B-Wort aus B^* in $c^*(A^*)$ enthalten? Begründen Sie Ihre Antwort!
- ii) Bestimmen Sie im Falle der Existenz die eindeutig bestimmten Urbilder der folgenden vier B-Wörter unter c^* bzw. begründen Sie entweder mittels i) oder direkt falls es kein Urbild gibt:

011001110, 011, 11110, 11100010100.

- (6 Punkte)
- 22.) Es sei || || eine Norm auf \mathbb{R}^n ; das ist eine Abbildung $|| || : \mathbb{R}^n \to \mathbb{R}$ mit folgenden Eigenschaften:
 - (N1) Es ist $||v|| \ge 0$ für alle $v \in \mathbb{R}^n$; ferner gilt folgende Äquivalenz: $||v|| = 0 \Leftrightarrow v = 0$.
 - (N2) Für alle $v \in \mathbb{R}^n$ und alle $\lambda \in \mathbb{R}$ gilt: $||\lambda \cdot v|| = |\lambda| \cdot ||v||$.
 - (N3) Für alle $v, w \in \mathbb{R}^n$ gilt die *Dreiecksungleichung*: $||v + w|| \le ||v|| + ||w||$.

Beweisen Sie, dass die Abbildung $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, definiert durch d(v, w) := ||v - w|| eine Metrik auf \mathbb{R}^n ist.

- (4 Punkte)
- 23.) Es sei n eine natürliche Zahl mit $n \geq 2$. Beweisen Sie die Äquivalenz der folgenden Aussagen:
 - (I) Der Restklassenring $\mathbb{Z}/n \cdot \mathbb{Z}$ ist ein Körper.
 - (II) n ist eine Primzahl.
 - (4 Punkte)
- 24.) Bestimmen Sie die kleinste natürliche Zahl n, so dass für passendes k mit $1 \le k \le n-1$ ein (n,k)-Code C über dem Körper mit 2 Elementen und $|C| \ge 26$ existiert, der bis zu einem Fehler korrigiert. Geben Sie auch einen entsprechenden (n,k)-Code zum Beispiel mit Hilfe einer Kontrollmatrix an, und interpretieren Sie das Ergebnis.
 - (6 Punkte)