11. Übungsblatt zu der Vorlesung

"Diskrete und Numerische Mathematik für Informatiker"

Frankfurt, den 21.6.2016

Abgabetermin: 28.6.2016, 12:00 – vor der Vorlesung

- 41.) Es sei $(x_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in \mathbb{R} . Beweisen Sie:
 - i) Die Folge $(x_n)_{n\in\mathbb{N}}$ ist beschränkt und hat daher nach dem Satz von Bolzano-Weierstraß (mindestens) einen Häufungspunkt $x\in\mathbb{R}$.
 - ii) Zeigen Sie: $\lim_{n\to\infty} x_n = x$.

Insgesamt folgt also: Jede Cauchy-Folge in \mathbb{R} ist konvergent, und der Grenzwert ist der – eindeutig bestimmte – Häufungspunkt.

Hinweis: Verwenden Sie Abschätzungen der Gestalt $|a| \le |a-b| + |b|$ und $|a-c| \le |a-b| + |b-c|$ für reelle Zahlen a,b,c.

(4 Punkte)

42.) Gegeben sei das Polynom $P \in \Pi_3$ durch

$$P(x) := x^3 - 8x + 1 \text{ für } x \in \mathbb{R}.$$

- i) Begründen Sie etwa mit dem Zwischenwertsatz dass P genau 3 Nullstellen in \mathbb{R} hat.
- ii) Berechnen Sie alle drei Nullstellen numerisch mit dem Newton-Verfahren bis sich die vom Rechner gelieferten Werte nicht mehr ändern.

(6 Punkte)

- 43.) Berechnen Sie $\sqrt[3]{7}$ numerisch bis sich der vom Rechner gelieferte Wert nicht mehr ändert, und zwar
 - i) mit dem Newton-Verfahren,
 - ii) mit der Sekantenmethode.

In den Prozessen darf aber nur von den 4 Grundrechenarten – und demgemäß auch von Potenzen der Gestalt r^m für $r \in \mathbb{R}^+$ und $m \in \mathbb{N}$ Gebrauch gemacht werden.

(6 Punkte)

44.) Die Funktion $f: \mathbb{R} \to \mathbb{R}$ sei gegeben durch

$$f(x) := e^x + x - 3.$$

- i) Begründen Sie, dass f genau eine Nullstelle $a \in \mathbb{R}$ hat.
- ii) Berechnen Sie a numerisch mit dem Newton-Verfahren, bis sich der vom Rechner gelieferte Wert nicht mehr ändert.

(4 Punkte)