Numerik partieller Differentialgleichungen Wintersemester 2016/17 Prof. Dr. Bastian von Harrach Dipl.-Math. Dominik Garmatter



## 1. Übungsblatt (erschienen am 19.10.2016)

#### Aufgabe 1.1 (Votieraufgabe)

Zu  $\varphi \in \mathcal{D}(\mathbb{R})$  und einer Nullfolge  $(h_n)_{n \in \mathbb{N}} \subset \mathbb{R}$  definieren wir

$$\varphi_n := \varphi(x + h_n)$$
 und  $\psi_n := \frac{\varphi_n - \varphi}{h_n}$ .

Zeigen Sie, dass  $\varphi_n \to \varphi$  und  $\psi_n \to \varphi'$  (in  $\mathcal{D}(\mathbb{R})$ ).

### Aufgabe 1.2 (Votieraufgabe)

Betrachten Sie die Funktionen  $\rho_{\epsilon}(x) := \epsilon^{-n} \rho(x/\epsilon)$  definiert in Beispiel 2.2 der Vorlesung. Gibt es ein  $\varphi \in \mathcal{D}(\mathbb{R}^n)$ , sodass die Folge  $(\rho_{\epsilon})_{\epsilon \in \mathbb{N}}$  in  $\mathcal{D}(\mathbb{R}^n)$  gegen  $\varphi$  konvergiert? Begründen Sie ihre Antwort!

#### Aufgabe 1.3 (Schriftliche Aufgabe)[3 Punkte]

Stetige lineare Funktionale  $f: \mathcal{D}(\Omega) \to \mathbb{R}$  heißen *Distributionen*. Die Menge aller Distributionen bezeichnen wir mit  $\mathcal{D}'(\Omega)$ . Für die Anwendung von f auf eine Testfunktion  $\varphi$  schreiben wir  $f(\varphi)$  oder  $\langle f, \varphi \rangle$ .

Sie dürfen ohne Beweis die folgende Aussage verwenden: ein lineares Funktional  $f: \mathcal{D} \to \mathbb{R}$  ist genau dann stetig auf  $\mathcal{D}$ , falls es folgenstetig ist, also

$$\langle f, \varphi_k \rangle \to \langle f, \varphi \rangle$$
 (in  $\mathbb{R}$ ) für alle  $(\varphi_k)_{k \in \mathbb{N}} \subset \mathcal{D}$  mit  $\varphi_k \to \varphi$  (in  $\mathcal{D}$ ).

Wir definieren die folgenden Funktionale  $T_i: \mathcal{D}(\mathbb{R}) \to \mathbb{R}, i = 1, \dots, 6$ , durch:

$$T_1(\varphi) := \sum_{j=0}^k D^j \varphi(0) \qquad T_2(\varphi) := \sum_{j=0}^\infty D^j \varphi(0)$$

$$T_3(\varphi) := \sum_{j=0}^\infty \varphi(j) \qquad T_4(\varphi) := \max_{x \in \mathbb{R}} \varphi(x)$$

$$T_5(\varphi) := \int_0^1 \varphi(x) \, \mathrm{d}x \qquad T_6(\varphi) := \int_{-\infty}^\infty \varphi(x) \, \mathrm{d}x.$$

Welches dieser Funktionale definiert eine Distribution?

#### Aufgabe 1.4 (Programmieraufgabe)[3 Punkte]

Schreiben Sie ein Programm, dass mittels finiter Differenzen die Lösung u von

$$-(k(x)u'(x))' = f(x), \quad x \in (-1,1), \quad u(-1) = 0 = u(1),$$

mit f(x) := 1 und

$$k(x) := 1$$
 für  $x \in (-1,0)$ ,  $k(x) := 2$  für  $x \in (0,1)$ 

approximiert.

Diskretisieren Sie dazu zu einem  $N \in \mathbb{N}$  und dazugehöriger Schrittweite  $h := \frac{2}{N}$  auf einem äquidistanten Gitter  $x_i = -1 + ih$ ,  $i = 0, \dots, N$  mit Zwischenpunkten  $x_{i+1/2} = -1 + (i+1/2)h$  die linke Seite der Gleichung

$$-(k(x)u'(x))'$$
 durch  $-\left[k(x_{i+1/2})\frac{u(x_{i+1})-u(x_i)}{h^2}-k(x_{i-1/2})\frac{u(x_i)-u(x_{i-1})}{h^2}\right]$ 

und lösen Sie das resultierende lineare Gleichungssystem unter Beachtung der Randbedingungen u(-1) = 0 = u(1).

Testen Sie ihr Programm für verschiedene N und vergleichen Sie ihr Ergebnis mit der schwachen Lösung aus Bemerkung 1.1 der Vorlesung.

# Hinweise zur Übungsblattbearbeitung:

- Zu schriftlichen Aufgaben soll eine Ausarbeitung/Lösung angefertigt werden, die bis zum 27.10.2016 um 12:00 Uhr in den Kästen ihres Übungleiters im 3. Stock der Robert-Mayer-Str. 6-8 abzugeben ist. Sollte ein Übungstermin nicht wahrgenommen werden können, so kann die Abgabe der schriftlichen Aufgabe auch bis zum obigen Zeitpunkt an ihren Übungleiter geschickt werden.
- Zu **Programmieraufgaben** soll bis zum 27.10.2016 um 12:00 Uhr eine **kommentierte** Ausarbeitung in MATLAB-Code an ihren Übungleiter geschickt werden. Bitte beginnen Sie die Betreffzeile Ihrer E-Mail mit "**PDGL1\_2016\_Gruppennummer:**" (wenn Sie z.B. in Gruppe 2 sind, so soll die Betreffzeile mit "PDGL1\_2016\_2:"beginnen).
- Zu **Votieraufgaben** wird keine schriftliche Abgabe verlangt. Die Lösung wird in der Übung besprochen.
- Alle Aufgaben von Übungsblatt 1 werden in den Übungen zwischen dem 31.10.-03.11.2016 besprochen.