Theoretical Quantum Optics SS 10

Lecturer: Prof. Dr. Walter Hofstetter 

                                


Course Information

  • The course will start on Apr 13, 2010. 
  • Final exam: Friday Oct 15, 10:00-11:30, Room: Phys. 2.116

  Updated version of the problem set 11 is available !!!


Topics

  • Quantization of electromagnetic fields and properties of coherent states 
  • Squeezed states
  • Phase space representation
  • Wigner function
  • Quantum mechanics of open systems
  • Lindblad and Fokker-Plank equations
  • Quantum Markov-process 
  • Decoherence and theory of measurement
  • Handling quantum information with quantum optical systems
  • Cavity QED
  • Theory of lasers
  • Light forces 
  • Ultracold atomic gases

 


Dates and Location

Dates: Tuesdays and Thursdays, 14:00 - 16:00
Location: Phys. 01.114


Lecture Notes

Lecture #DateTopicScript (pdf)
1 13.04   quantization of the electromagnetic field lecture1
2 15.04   thermal and coherent states lecture2
3 20.04   squeezed states lecture3
4 22.04   the quantum phase lecture4
5 27.04   classical coherence lecture5
6 29.04   quantum coherence lecture6
7 04.05   phase dependent correlations lecture7
8 06.05    Beam splitters and interference lecture8
9 11.05   the P representation lecture9
10 18.05   Q- and Wigner distributions lecture10
11 20.05   characteristic functions lecture11
12 25.05   dipole hamiltonian and golden rule lecture12
13 27.05  spontaneous and stimulated emission lecture13
14 01.06  Rabi model and Jaynes-Cummings Hamiltonian lecture14
15 08.06  collapse and revival lecture15
16 10.06 open quantum systems lecture16
17 15.06 dressed states and entanglement lecture17
18 17.06 entanglement in the JC model lecture18
19 22.06 Kraus representation, depolarization lecture19
20 24.06 amplitude damping and optical Bloch equations lecture20
21 29.06 the Lindblad equation lecture21
22 01.07 damped harmonic oscillator and microscopic derivation lecture22
23-24 08.07 dissipative 2-level system lecture23-24
25 13.07 quantum Brownian motion and decoherence lecture25
26 15.07 trapped ion quantum computation lecture26

 


Exercises

LectureDateTopicExercise (pdf)
1 13.04   Displacement operator set 1
2 20.04   Squeeze operator set 2
3 27.04   Casimir effect set 3
4 04.05   Hanbury Brown-Twiss experiment set 4
5 11.05    Beam splitter operator set 5
6 18.05   Homodyne detection set 6
7 25.05   Mandel Q-parameter set 7
8 01.06   Driven two-level atom set 8
9 08.06   Degenerate Raman scattering set9
10 15.06   Two-photon JC model set10
11 22.06   Correlations in a separable mixed state set11
12 29.06   superposition of coherent states set12 (updated)


Literature

AuthorTitlePublisher
M. Scully and M. Zubairy Quantum Optics Cambridge, 1997
R. Loudon The Quantum Theory of light Oxford, 2000
S. Haroche and J.-M. Raimond Exploring the Quantum: Atoms, Cavities and Photons Oxford, 2006
D.F. Walls and G.J. Milburn Quantum Optics Springer, 2007
C.W. Gardiner and P. Zoller Quantum Noise Springer, 2004