Structure-Properties Relationships in Boron-Doped Polycyclic Aromatics

Sven Kirschner,^[a] Jan-M. Mewes,^[b] Matthias Wagner^[a]

kirschner@chemie.uni-frankfurt.de; janmewes@janmewes.de; matthias.wagner@chemie.uni-frankfurt.de

[a] Institute of Inorganic and Analytical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 7,60438 Frankfurt am Main, Germany **tinygu.de/skeuchems2018** [b] Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study (NZIAS), Massey University Albany, Private Bag 102904, Auckland 0745 (New Zealand)

Introduction

The substitutional doping of polycyclic aromatic hydrocarbons (PAHs) with main-group elements such as boron (B-PAHs) provides access to new organic materials.^[1] In spite of their great application potential, e.g., in organic light-emitting devices, only little systematic research has been performed regarding the effect of π -extension on the electronic structures of B-PAHs. We therefore synthesised a series of closely related molecules and investigated their optoelectronic properties by experimental^[a] and theoretical^[b] means.

Phenylene-Containing Oligoacenes

GOETHE

UNIVERSITÄT

FRANKFURT AM MAIN

find this poster online:

z-**DBI**(Mes)₂^[3]

- five-step synthesis (31% overall yield)
- deep red solid, non-fluorescent
- lack of fluorescence due to optically forbidden S1
- non-radiative deactivation via a low-lying doubly excited state
- comparatively high electron affinity without EWG attached
- potent yet water-stable Lewis acid: quant. adducts with MeCN and F

v-**DBI**(Mes)₂^[3] $E_{1/2} = -1.82, -2.51 \text{ V}$ $\varphi_{\text{PL}} = 65\%$ values given for the 12:1 v:z-mixture

- five-step synthesis (5% overall yield)
- non-selective synthesis of z/v-isomeric mixture
- orange solid, strong green fluorescence
- lower electron affinity compared to the other DBI-derivatives
- no adduct formation with MeCN

super**DBI**(Mes)₂^[3] $E_{1/2} = -1.51, -2.27 \text{ V}$ $\varphi_{PL} = 12\%$

- six-step synthesis (27% overall yield)
- deep red solid, weak orange fluorescence
- same redox potential as **DBI**(Mes)₂
- no adduct formation with MeCN

Mes

Mes

i**DBP**(Mes)₂^[2]

 $E_{1/2} = -1.99 \text{ V}$

 $arphi_{PL}$ = 87%

- three-step synthesis

(38% overall yield)^[4]

- sigmoidal curvature in the solid state

Polycyclic Hydrocarbons

- electron affinity close to that of the DBI-derivatives

- six-step synthesis (4% overall yield)

Regular Oligoacenes

DBP(Mes)₂^[2] $E_{1/2} = -2.03, -2.75 \text{ V}$ $\varphi_{\text{PL}} = 47\%$

- five-step synthesis (18% overall yield)
 - Synthosis (1070 Overall yield)
 - low electron affinity
 - no adduct formation with MeCN
 - ---- abs **DBP**(Mes)₂

