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Resumen

Una superficie de Riemann es una variedad de dimensión 2 en la que los cambios de cartas son
funciones holomorfas entre abiertos del plano complejo. Las superficies de Riemann son siempre
orientables, y por lo tanto las compactas están caracterizadas topológicamente por su género.
Las superficies de Riemann compactas se pueden ver también como curvas algebraicas lisas sobre
los complejos, y por lo tanto se puede definir una acción del grupo de Galois Gal(C/Q) sobre el
conjunto de las superficies de Riemann compactas mediante la acción de los elementos de Galois
en los polinomios con coeficientes complejos.

Otra forma de estudiar superficies de Riemann es desde el punto de vista de la uniformización.
Por la teoŕıa de espacios recubridores toda superficie de Riemann es el cociente de una superficie
simplemente conexa, llamada recubridor universal, por la acción libre de un subgrupo del grupo de
automorfismos de este recubridor. El Teorema de Uniformización nos asegura que toda superficie
de Riemann simplemente conexa es isomorfa al plano, a la esfera o al disco unitario, y por lo
tanto estos son los únicos posibles recubridores universales.

Si el género de una superficie compacta es mayor o igual que 2, el recubridor universal es nece-
sariamente el disco, cuyo grupo de automorfismos es isomorfo a PSL(2, R). Una de las principales
caracteŕısticas de este grupo de automorfismos es que coincide con el grupo de isometŕıas (que
preservan la orientación) del disco con la métrica hiperbólica, y por lo tanto cualquier superficie de
Riemann de género mayor o igual que dos hereda de forma natural una métrica hiperbólica. Los
subgrupos de PSL(2, R) que definen una superficie de Riemann en el cociente no tienen porqué
actuar libremente, basta con que actúen de manera propiamente discontinua. A tales grupos se
les llama grupos fuchsianos.

Entre los grupos fuchsianos, una familia importante es la de los grupos triangulares, que
son grupos generados por giros alrededor de los tres vértices de un triángulo hiperbólico y que
definen en el cociente una superficie de Riemann de género 0 con tres puntos marcados. Los
grupos triangulares están estrechamente relacionados con los dessins d’enfants, que son los objetos
principales de estudio de este curso.

Un dessin d’enfant es un grafo finito bicoloreado en una superficie topológica compacta y
orientable cuyo complementario es unión finita de discos topológicos. Todo dessin dota a la
superficie topológica en la que está inmerso de una estructura de superficie de Riemann. Es más,
por el Teorema de Belyi–Grothendieck esa superficie corresponde a una curva algebraica con
coeficientes en el cuerpo de números algebraicos Q, y a la inversa, a toda curva con coeficientes
algebraicos le corresponde al menos un dessin.

El objetivo de este minicurso es estudiar la existencia de múltiples dessins uniformes del
mismo tipo en una superficie de Riemann. En el caso no aritmético se tiene un resultado inmedi-
ato, pero en el caso en el que el grupo que uniformiza la superficie es aritmético el estudio del
número de dessins distintos guarda una estrecha relación con el de órdenes maximales en álgebras
de cuaterniones. Gracias a ello, encontraremos una condición necesaria y suficiente para que una
superficie de Riemann contenga varios dessins uniformes. También expondremos varios ejemplos
de superficies de Riemann bien conocidas en las que, por los resultados anteriores, demostramos
que viven varios dessins uniformes del mismo tipo.

Este curso está basado en un trabajo conjunto con Ernesto Girondo y Jürgen Wolfart:
• E. Girondo, D. Torres-Teigell, J. Wolfart: Shimura curves with many uniform dessins,
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CHAPTER 1

Introduction

In this chapter we introduce many basic notions which will be used later in the rest of the
chapters.

In section 1.1 we give an introduction to Riemann surfaces. Although there is a huge amount
of literature on this subject, perhaps the most suitable references for our purposes are [19, 6, 8].

Section 1.2 deals with Fuchsian groups and triangle groups, their fundamental domains and
their relation with hyperbolic geometry. Most of what is presented here can be found in [1, 13].

In section 1.3 we present the Grothendieck–Belyi theory of dessins d’enfants and Belyi func-
tions. We refer the reader to [8] for a comprehensive and more formal exposition (see also [20]).

Finally, in section 1.4 we begin the study of multiple dessins d’enfants on the same Riemann
surface.

1.1. Riemann surfaces

A Riemann surface is a topological surface with a complex structure, i.e. with an atlas
{(Ui, φi)} such that the transition functions φi ◦ φ−1

j are holomorphic functions between open
sets of the complex plane C. By the Cauchy–Riemann equations, every Riemann surface is
orientable, and therefore the compact ones are topologically characterized by their genus.

The most basic examples of Riemann surfaces are open sets of the complex plane U ⊂ C
with the identity atlas {(U, Id)}. In particular one has the complex plane C, the upper half-plane
H = {w ∈ C : Im(w) > 0} and the unit disc D = {w ∈ C : |w| < 1}. Other surfaces that can
be given a Riemann surface structure are the unit sphere S2 = {(x, y, z) ∈ R3 : x2 +y2 +z2 = 1},
the complex extended plane (or Riemann sphere) bC = C ∪ {∞} and the complex projective line
P1 := P1(C).

It is because of the complex structure that one can define in a natural way holomorphic
and meromorphic functions on Riemann surfaces and morphisms between them. The following
Riemann surfaces are isomorphic: H ∼= D and S2 ∼= bC ∼= P1. In fact, these two are, together with
the complex plane C the only simply connected Riemann surfaces.

Theorem (Uniformisation theorem). Any simply connected Riemann surface is isomorphic
to D, C or bC.

It is a classical fact that there exists a bijection between isomorphism classes of compact
Riemann surfaces and isomorphism classes of non-singular projective algebraic curves over the
complex field. We will therefore use interchangeably the terms Riemann surface and algebraic
curve.

As for automorphisms of compact Riemann surfaces, i.e. isomorphisms of S onto itself, there
is a bound to the order of the automorphism group Aut(S) of S in terms of its genus g(S). This
bound, called Hurwitz bound, states that for g(S) ≥ 2 one has |Aut(S)| ≤ 84(g(S) − 1). The
Riemann surfaces achieving it are called Hurwitz curves, and any finite group G which occurs as
the full automorphism group of one of these surfaces is called a Hurwitz group.

The Galois group Gal(C) := Gal(C/Q) acts naturally on complex algebraic varieties in
the following way. Let first S = {[x, y, z] ∈ P2(C) : F (x, y, z) = 0} be a projective algebraic
curve given as the zeroes of a homogeneous polynomial F ∈ C[X, Y, Z]. If σ ∈ Gal(C) is a
field automorphism of C one can construct the Galois conjugate curve S�

F = SF � , where F � is
obtained from F by applying σ to its coefficients. We can proceed in the same way in higher
dimension (or if the model for the curve S is not plane), so that if V = {F� = 0} is an algebraic
variety defined as the set of zeroes of a finite collection of polynomials {F�} ⊂ C[X1, . . . , Xn],
the Galois conjugate variety is defined as the set of zeroes V � = {F �

� = 0}.
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2 1. INTRODUCTION

Let now S be a compact Riemann surface and k ⊆ C a field. We say that k is a field of defi-
nition of S if there exists a finite collection of homogenous polynomials F ⊂ k[X1, . . . , Xn] such
that S and SF = {[x1, . . . , xn] ∈ Pn−1(C) : Q(x1, . . . , xn) = 0, for all Q ∈ F} are isomorphic.
On the other hand if we define the inertia group

IS = {σ ∈ Gal(C) : S�
F

∼= SF },

which clearly does not depend on the algebraic model of S, then the fixed field

CIS = Fix(IS) = {α ∈ C : σ(α) = α, for all σ ∈ IS}

is called the field of moduli of S, and it is denoted by M(S). In particular the index of IS in
Gal(C) agrees with the cardinality of the orbit of S under the action of Gal(C). The field of
moduli of a Riemann surface is always contained in any field of definition, but the converse is
not true in general, as shown by well-known counterexamples ([5, 21]). The concepts of field
of definition and field of moduli of a complex algebraic variety V of arbitrary dimension can be
defined in the same way.

The general theory of covering spaces tells us that any topological manifold X admits a
simply connected universal covering eX. Furthermore, if X has a complex structure the universal
cover can be endowed with a complex structure such that the projection eX −→ X is a morphism.

In the particular case of surfaces, this theory ensures that any Riemann surface S can be
written as the quotient S = eS/G of a simply connected Riemann surface eS by the free action
of a subgroup G of the group of automorphisms Aut( eS), which is moreover isomorphic to the
fundamental group π1(S). In this case, the situation is quite easy since by the uniformisation
theorem the universal covering of any Riemann surface S must be isomorphic either to D, C
or P1(C). Now the only Riemann surface having P1(C) as universal cover is precisely P1(C),
since any automorphism of P1(C) has fixed points. As for the complex plane, one has Aut(C) ∼=
{z 7−→ az + b : a, b ∈ C} and any subgroup G < Aut(C) which does not fix points is a group
of translations, therefore abelian; hence no compact Riemann surface of genus greater than or
equal to two can have C as universal covering, since its fundamental group is not abelian. As
a first consequence, it becomes particularly important the group of automorphisms of the disc,
since almost every compact Riemann surface will be uniformised by a torsion-free subgroup of
it.

The groups of automorphisms of H and D are isomorphic to PSL(2, R) and they can be
identified with

Aut(H) =
{

w 7−→
aw + b
cw + d

: a, b, c, d ∈ R, ad − bc ̸= 0
}

and

Aut(D) =
{

w 7−→ ei� w − α
1 − αw

: α ∈ D, θ ∈ R
}

.

Finally, the genus of a compact Riemann surface determines its universal covering.

Proposition 1.1. Compact Riemann surfaces can be characterized in the following way:
(i) the only compact Riemann surface of genus zero is the Riemann sphere P1(C);
(ii) the universal covering of any compact Riemann surface of genus one is the complex

plane C, and the group of deck transformations is a lattice:

Λ = Zω1 ⊕ Zω2, with ω1, ω2 ∈ C, and !1
!2

̸∈ R;

(iii) the universal covering of any compact Riemann surface of genus greater than or equal
to two is the upper half-plane H, and the group of deck transformations is a subgroup
Γ < PSL(2, R).

1.2. Fuchsian groups. Triangle groups.

The subgroups of Aut(H) which define a Riemann surface structure on the quotient do not
necessarily act without fixed points. A Fuchsian group is a subgroup Γ < PSL(2, R) which is
discrete with respect to the topology induced by the usual topology in R4. Fuchsian groups
were introduced by Henri Poincaré in 1880 following writings of Lazarus Fuchs about differential
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equations. One can prove that a subgroup Γ < PSL(2, R) is a Fuchsian group if and only if it
acts discontinuously on H, i.e.

(i) Every w ∈ H is a fixed point of only a finite number of transformations γ1 = Id, . . . , γr ∈
Γ;

(ii) For every w ∈ H there exists a neighbourhood U such that γ(U) ∩ U = ø for every
γ ∈ Γ \ {γ1, . . . , γr}.

The quotient H/Γ of H by the action of a Fuchsian group Γ has a natural Riemann surface
structure. The elements of Γ that fix points in H correspond precisely those of finite order. If the
resulting Riemann surface H/Γ is compact, the set of conjugacy classes of finite order elements
of Γ is finite. One can take suitable representatives γi of order mi such that for every w ∈ H the
set of elements of Γ fixing it is either trivial or a cyclic group generated by an element conjugate
to one of the γi. Under these assumptions, if the Riemann surface defined by Γ has genus g we
say that Γ has signature (g; m1, . . . , mk).

Let now Γ, Γ′ < PSL(2, R) be Fuchsian groups acting without fixed points on H and S = H/Γ
and S′ = H/Γ′ be the corresponding (not necessarily compact) Riemann surfaces uniformised
by them. Then S and S′ are isomorphic if and only if there exists γ ∈ PSL(2, R) such that
Γ′ = γΓγ−1. Moreover Aut(H/Γ) ∼= N(Γ)/Γ, where N(Γ) = {γ ∈ PSL(2, R) : γΓγ−1 = Γ} is
the normaliser of Γ in PSL(2, R).

If Γ is not cyclic then N(Γ) is also a Fuchsian group, and therefore compact Riemann surfaces
of genus greater than or equal to two have finite group of automorphisms.

One of the most relevant facts about holomorphic self-mappings of the disc is their relation
with hyperbolic geometry. Let us first recall some concepts about this geometry. The basic idea
behind hyperbolic (plane) geometry is replacing Euclid’s fifth postulate (more precisely Playfair’s
axiom):

For any given line L and point P not on L, there is exactly one line through
P that does not intersect L.

by the following one:
For any given line L and point P not on L, there are infinitely many lines
through P that do not intersect L.

The hyperbolic plane satisfies this new axiom. It is a simply connected Riemannian manifold
of dimension 2 whose metric has constant curvature −1. The metrics

ds2
H =

dx2 + dy2

y2 and ds2
D =

dx2 + dy2

(1 − (x2 + y2))2

on the upper half-plane H and on the disc D respectively turn them into models of the hyperbolic
plane. These metrics are conformal to the Euclidean one in R2, and therefore the Euclidean angles
are preserved.

One can compute the hyperbolic length of a curve γ(t) = (x(t), y(t)) and the hyperbolic area
of a set E contained in H or in D through the formulae

ℓH(γ) =
∫ √

x′(t)2 + y′(t)2

y(t)
dt , AH(E) =

∫ ∫

E

dxdy
y2 ,

ℓD(γ) =
∫ √

x′(t)2 + y′(t)2

1 − (x(t)2 + y(t)2)
dt , AD(E) =

∫ ∫

E

dxdy
(1 − (x2 + y2))2 .

In both models the geodesics of the hyperbolic metric are arcs of (generalised) circumferences
which intersect perpendicularly the border, ∂H = R ∪ {∞} in the case of H and ∂D = S1 in the
case of D.

The group Aut(H) ∼= PSL(2, R) of holomorphic self-mappings of H coincides with the group
of orientation-preserving isometries of the hyperbolic metric and acts transitively on the set of
hyperbolic geodesics. In particular, its elements preserve both hyperbolic distance and hyperbolic
area.

Let us now consider a Fuchsian group Γ < PSL(2, R) acting on the upper-half plane. We
will call fundamental domain of Γ to any closed subset Ω ⊂ H such that:

(i) Ω contains at least one point of each orbit of Γ;
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(ii) the interior of Ω does not contain points equivalent under Γ;
(iii) AH(∂Ω) = 0, where ∂Ω is the border of Ω.

If Ω is a fundamental domain, H =
∪


∈Γ γ(Ω) and we say that Ω and its images under Γ
form a tessellation of H. There is a specific kind of fundamental domains with particularly nice
properties. Let p be a point not fixed by any non-trivial element of Γ. We call Dirichlet region
of Γ centered at p to the set

Dp(Γ) = {w ∈ H : ρH(w, p) ≤ ρH(γ(w), p), ∀γ ∈ Γ},

where ρH is the hyperbolic distance. The region Dp(Γ) is an intersection of hyperbolic half-planes
and therefore it is a convex hyperbolic polygon, i.e. a closed connected set on H whose border
is formed by arcs of hyperbolic geodesics. As a consequence one can represent the compact
Riemann surface H/Γ as a fundamental polygon P together with a side pairing on the sides
s1, . . . , sn, so that for every si there is an sj(i) and a γ ∈ Γ such that γ(si) = sj(i).

Moreover, if the group of elements of Γ fixing a vertex vj ∈ P is generated by γj ∈ Γ, then
the angle at vj is αj = 2π/ord(γj). The converse is included in the following theorem.

Theorem 1.1 (Poincaré). Let P ⊂ H be a hyperbolic polygon with (not necessarily ordered)
sides s1, . . . , sn, s′

1, . . . , s′
n. Suppose that there exist elements γi ∈ PSL(2, R) such that γi(si) = s′

i
for each i = 1, . . . , n and let Γ = ⟨γ1, . . . , γn⟩. If for any complete collection Vj of vertices of P
equivalent under Γ the sum of its angles is equal to 2π/mj with mj ∈ N, then the group Γ acts
properly discontinuously on H and H/Γ is a Riemann surface. If moreover P ∩ ∂H = ø, then
H/Γ is compact.

A special class of Fuchsian groups is that of Triangle groups. Let l, m and n be integers such
that 1/l + 1/m + 1/n < 1. To construct a triangle group of signature (l, m, n) one considers a
hyperbolic triangle T in the hyperbolic plane, with vertices v0, v1 and v∞ and angles π/l, π/m
and π/n respectively. The reflection Ri over the edge of T opposite to vi is an anticonformal
isometry of the hyperbolic plane. The group generated by these reflections acts discontinuously
on H in such a way that T is a fundamental domain. The index-2 subgroup formed by the
orientation-preserving transformations is called a triangle group of type (l, m, n). Elementary
hyperbolic geometry ensures that the triangle T , and hence the corresponding triangle group,
that will be denoted by ∆ = ∆(l, m, n), are unique up to conjugation in PSL(2, R).

The quadrilateral consisting of the union of T and one of its reflections Ri(T ) (e.g. the
shaded triangle in the figure) serves as a fundamental domain for the group ∆(l, m, n), and
therefore its images under ∆(l, m, n) tessellate the whole hyperbolic plane. Thus, the quotient
H/∆ is an orbifold of genus zero with three cone points [v0]∆, [v1]∆ and [v∞]∆ of orders l, m and
n respectively, where for an arbitrary Fuchsian group Λ the notation [v]Λ stands for the orbit of
the point v under the action of Λ.

It is a classical fact that ∆(l, m, n) has presentation

∆(l, m, n) = ⟨x, y, z : xl = ym = zn = xyz = 1⟩ ,

where

(1.1) x = R1R∞ , y = R∞R0 , z = R0R1 ,

are positive rotations around v0, v1 and v∞ through angles 2π/l, 2π/m and 2π/n respectively.
It is also classical that any other finite order element of ∆(l, m, n) is conjugate to a power of x,
y or z and that these account for all elements in ∆ that fix points. We will always identify H/∆
with P1 via the unique isomorphism

(1.2)

Φ : H/∆ −→ P1

[v0]∆ 7−→ 0
[v1]∆ 7−→ 1
[v∞]∆ 7−→ ∞

These groups are rigid among Fuchsian groups, in the sense that the quotient orbifold
H/∆(l, m, n) does not admit non-trivial deformations.
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◦ ◦

◦

◦

0=v0 v∞

v1

x(v1)

x

z

y

T

R1(T )

Figure 1.1. Generators x, y and z together with a fundamental domain of
∆(l, m, n) (depicted inside the unit disc model of the hyperbolic plane).

It is a well-known fact (see [23]) that the normaliser N(∆) in PSL(2, R) of a triangle group
∆ ≡ ∆(l, m, n) is a triangle group again, and that the quotient N(∆)/∆ is faithfully represented
in the symmetric group S3 via its action on the vertices [v0], [v1], [v∞] of the orbifold H/∆.
Thus

(1.3) N(∆)/∆ ∼=






{1}, if l, m and n are all distinct;
S2, if l = m ̸= n;
S3, if l = m = n.

where Sk stands for the symmetric group on k elements.
In the second case, a representative for the non-trivial element (1, 2) ∈ S2 is the rotation

λ4 ∈ N(∆) of order two around the midpoint of the segment joining v0 and v1 (see Figure 1.2).
Conjugation by this element yields an order two automorphism of ∆ which interchanges x and
y and sends z to x−1zx. We will denote it by σ̃4.

In the case when l = m = n we can choose the same representative λ4 for the element
(1, 2) ∈ S3, and the order three rotation λ1 in the positive sense around the incentre of T (i.e.
the point where the three angle bisectors meet, see [1] §7.14) for (1, 2, 3) ∈ S3. Conjugation by
the latter induces an automorphism σ̃1 of ∆ of order three which sends x to y and y to z (see
Figure 1.2).

◦

◦ ◦
x

z

y

◦
◦
λ4

λ1

◦

◦ ◦
x

z

y

◦
λ4

Figure 1.2. Generators of ∆(l, l, l) and ∆(l, l, n), and representatives of
(1, 2), (1, 2, 3) ∈ S3.

It is worth noting that in the case when N(∆)/∆ = S2 or {1} the extension splits, i.e
N(∆) = ∆ × (N(∆)/∆), but when N(∆)/∆ = S3 it does not, since no Fuchsian group can
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contain a noncyclic finite group. This means that the representatives of N(∆)/∆ cannot be
chosen naturally to form a complement of ∆.

To summarize, N(∆) can be written as

(1.4) N(∆) ∼=






∆, if l, m and n are all distinct;
⟨ ∆, λ4 ⟩, if l = m ̸= n;
⟨ ∆, λ1, λ4 ⟩, if l = m = n.

1.3. Dessins d’enfants and Belyi functions

In the Grothendieck-Belyi theory of dessins d’enfants there are two main ingredients. First,
a dessin d’enfant is a pair (S, D), where S is a compact oriented topological surface and D is a
finite graph embedded in S satisfying the following properties:

(i) it is a bicoloured graph, i.e. every vertex has an assigned colour, white (◦) or black (•),
in such a way that the two vertices of an edge have always different colours;

(ii) each connected component of the complement S \ D is homeomorphic to a disc. Each
of them will be called face of the dessin.

We will regard two dessins (S1, D1) and (S2, D2) as equivalent (or isomorphic) if there exists
an orientation-preserving homeomorphism f : S1 −→ S2 whose restriction f |D1 induces an
isomorphism of bicoloured graphs f |D1 : D1 −→ D2. The degree of a vertex of D is defined as
the number of incident edges and the degree of a face is defined as half the number of edges
delimiting that face, counting multiplicities. If the least common multiples of the degrees of the
white vertices, black vertices and faces are l, m and n respectively, we will say that the type of
the dessin is (l, m, n).

The other ingredient is Belyi functions. A Belyi function is a meromorphic function β :
S −→ P1 on a Riemann surface S with three ramification values at most, which we can suppose
to be 0, 1 and ∞. We will consider two Belyi pairs (S, f) and (S′, f ′) equivalent if there exists
an isomorphism F : S −→ S′ such that f = f ′ ◦ F .

Grothendieck pointed out that there is a bijective correspondence between equivalence classes
of dessins d’enfants and equivalence classes of Belyi pairs. To recover a dessin from a Belyi
function β one simply takes the inverse image of the interval [0, 1] under β and considers β−1(0)
as white vertices and β−1(1) as black vertices. Constructing a Belyi function from a dessin D
is slightly more complicated. It can be achieved by considering a triangulation associated to D
and constructing a topological covering β from S minus the set of vertices and face centres of D
to P1 \ {0, 1, ∞}, which endows S with a Riemann surface structure SD to which β extends as a
meromorphic function with three ramification values. The degree of a given white vertex, black
vertex or face of the dessin can be understood then as the ramification order of β in such point.

The importance of this fact lies on its relation with the theorem of Belyi ([2]), which states
that a compact Riemann surface S is isomorphic to an algebraic curve defined over the field of
algebraic numbers Q if and only if there exists a Belyi function f : S −→ P1.

The fact that any Riemann surface admitting a Belyi function can be defined over Q was
already known and it follows from Weil’s criterion ([28], see also [11]). However the proof of
the other implication, which is due to Belyi, is as astonishing as simple. Grothendieck himself
wrote about it in [12]: “[...]Belyi annonce justement ce résultat, avec une démonstration d’une
simplicité déconcertante tenant en deux petites pages d’une lettre de Deligne – jamais sans doute
un résultat profond et déroutant ne fut démontré en si peu de lignes!” 1. This proof is based
on constructing a function f from S to the sphere P1 ramified only over rational values, and
compose it with suitable Belyi polynomials, which are polynomials of the form

Pm;n(w) =
(m + n)m+n

mm · nn wm(1 − w)n.

The relevant fact is that 0, 1, m
m+n and ∞ are the only ramification points of this polynomial, and

they are sent to {0, 1, ∞}. Therefore, one can compose the function f with consecutive suitable
polynomials Pmi;ni so that so that the set of ramification values of the resulting function ends
up being the set {0, 1, ∞}.

1The translation into English that can be found in the introduction of [20 ] reads: \[...]Belyi announced
exactly that result, with a proof of a disconcerting simplicity which �t into two little pages of a letter of Deligne
{ never, without a doubt, was such a deep and disconcerting result proved in so few lines!" .
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Theorem (Belyi–Grothendieck). For any Riemann surface S of genus g defined over Q
there exists a dessin D on the compact oriented topological surface of genus g such that S = SD.

The importance of triangle groups in Grothendieck’s theory of dessins d’enfants comes from
the fact that any Belyi function β in a Riemann surface S can be represented as the natural
projection H/Λ −→ H/∆(l, m, n) from the quotient surface H/Λ ∼= S to an orbifold H/∆(l, m, n)
given by the inclusion Λ < ∆(l, m, n), where the signature of ∆(l, m, n) depends on the ramifi-
cation orders of β ([3, 29]).

We have two important families of dessins. A dessin d’enfant D of type (l, m, n) (and its
associated Belyi function) on a Riemann surface S is called uniform if all white vertices, black
vertices and faces have degree l, m and n respectively. In the specific case where β is a uniform
Belyi function of type (l, m, n), it corresponds to the inclusion of a torsion-free group K in the
triangle group ∆(l, m, n). The group K is, of course, isomorphic to the fundamental group π1(S).

If, moreover, the automorphism group Aut(S) acts transitively on the edges of the dessin,
we say that D is regular. A regular Belyi function corresponds to the normal inclusion of a
uniformising group K of S in ∆(l, m, n), so that H/K −→ H/∆(l, m, n) is a Galois covering
with group G ∼= ∆(l, m, n)/K. Riemann surfaces which admit a regular Belyi function are
called quasiplatonic curves (or triangle curves). In the next section we will make this connection
between quasiplatonic curves and their covering groups G more explicit.

In these two cases one can study renormalisations of the dessin. Suppose that D is a uniform
dessin on a Riemann surface S associated to a Belyi function β, and suppose that some of the
orders of its type (l, m, n) are repeated. Then one can construct other dessins on the same
surface by renormalisation in the following way. Consider an automorphism F : P1 −→ P1 of the
Riemann sphere which permutes the ramification values of β of the same order, i.e. F permutes,
for instance, 0 and 1 if l = m ̸= n, and F permutes 0, 1 and ∞ if l = m = n. In this way the map
βF = F ◦ β is a Belyi function again, and the corresponding dessin DF is called a renormalised
dessin of D.

Now, if the original Belyi function was given by an inclusion K < ∆, the renormalised
function βF is induced by an element of N(∆) in the following way: there exists α ∈ N(∆)
whose action on v0, v1 and v∞ coincides with the action of F on 0, 1 and ∞, and then βF is
given by the inclusion αKα−1 < ∆, since one has

βF : H/K �−−−−→ H/∆ �−−−−→ H/∆

In the case when α additionally belongs to N(K), there exists an isomorphism ϕ ∈ Aut(S) such
that β ◦ ϕ = βF , and DF and D are isomorphic.

1.4. Multiple dessins d’enfants on a surface

The correspondence between (equivalence classes of) dessins d’enfants and (isomorphism
classes of) algebraic curves defined over Q is not bijective, given a Riemann surface defined over
Q, there are many different dessins d’enfants on S. However, the question of when two different
dessins d’enfants live on the same surface is too wide to answer in its full generality, so one has
to restrict to certain families of dessins.

In [10] it was considered the case of regular dessins of the same type (see also [7]). Let us
remind that a regular dessin of type (l, m, n) on a surface S arises as the normal inclusion of
a group K uniformising S in a triangle group ∆(l, m, n) and, therefore, the situation of several
regular dessins of the same type on S corresponds to the normal inclusion of K in different
conjugate triangle groups of type (l, m, n). Girondo and Wolfart proved that if this happens,
these inclusions are induced by inclusions between triangle groups.

The next family of dessins that one could study is that of uniform dessins. Recall that a
uniform dessin of type (l, m, n) on a surface S arises as the inclusion – not necessarily normal –
of a group K uniformising S in a triangle group ∆(l, m, n). As a consequence, the existence of
several uniform dessins of type (l, m, n) corresponds to the inclusion of K in different triangle
groups of type (l, m, n)

To put the problem in a precise form we observe first that a surface group K contained in
a triangle group ∆ is contained in all triangle groups ∆′ containing ∆ (and maybe also in some
triangle subgroups of ∆), all these inclusions inducing dessins of different types on the surface
S. All possibilities of such inclusions are well known by work of Singerman [23], so one can
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concentrate on dessins of the same type (l, m, n), i.e. on the following question. Let K be a
Fuchsian surface group contained in a triangle group ∆(l, m, n): which and how many different
conjugate groups α∆α−1, α ∈ PSL(2, R), contain K as well?

Note that one could consider the following similar question. Let ∆ be a Fuchsian triangle
group and let K be a finite index subgroup: for which and for how many α ∈ PSL(2, R) do we
have α−1Kα < ∆?

These two questions are not equivalent only when α belongs either to N(∆) or to N(K), the
normalisers of ∆ and K in PSL(2, R). However, if α ∈ N(∆) the two inclusions K, α−1Kα < ∆
correspond to renormalised dessins, and if α ∈ N(K), conjugation by α induces an isomorphism
of the curve, which in turn induces an isomorphism between the dessins corresponding to K < ∆
and K < α∆α−1. Therefore, if one wants to study the problem of non-isomorphic dessins
of the same type on the same surface not related by renormalisation, then both questions are
interchangeable. We will thus focus on the first version, which is more natural. Moreover, since
conjugation of K by an element of N(∆) induces a renormalisation of the dessin, we will only
count residue classes α ∈ PSL(2, R)/N(∆). Let us stress here that, in view of the question we are
dealing with, two dessins are considered different if they correspond to different Belyi functions.
Whether they are isomorphic or not is a completely different question.

If K is included in both ∆ and α∆α−1, the element α belongs by definition to both the
commensurator groups of K and of ∆. Now, by the theorem of Margulis (see section 3.1) the
commensurator ∆ = Comm(∆) of a non-arithmetic Fuchsian group ∆ is a finite extension of ∆
and a Fuchsian group itself. But finite extensions of triangle groups are known to be triangle
groups again, so if ∆ is non-arithmetic, ∆ is itself a triangle group, and consulting Takeuchi’s
list of arithmetic triangle groups [26] and Singerman’s list of inclusion relations [23] it is easy to
see that the index [∆ : ∆] is at most 6. So we have the first part of the following theorem.

Theorem 1.2. Surface groups contained in a non-arithmetic Fuchsian triangle group ∆
define isomorphic surfaces if and only if they are conjugate in a maximal Fuchsian triangle
group ∆ extending ∆. They fall in at most 6 different conjugacy classes under conjugation by
∆. If K is such a surface group then the number of triangle groups conjugate to ∆ in which K
is included is 1, 3 or 4.

Proof. The second part of the theorem follows from the fact that non-normal inclusions
∆ < ∆ of non-arithmetic triangle groups occur only with index 3 for ∆(2, n, 2n) < ∆(2, 3, 2n),
or 4 for ∆(3, n, 3n) < ∆(2, 3, 3n). �



CHAPTER 2

Quaternion algebras

For an exhaustive introduction on the theory of quaternion algebras see for example [27, 17]
(see also [16, 14]). Much of what is written here is taken from those books.

We will also need some basic notions on field theory and field completions. All the prelimi-
naries needed can be found in [17] for instance.

2.1. Field completions. p-adic �elds

Let k be a number field. A valuation v on k is a map v : k −→ R+ satisfying the following
three properties:

(i) v(x) = 0 if and only if x = 0.
(ii) v is a homomorphism of (multiplicative) groups, i.e. v(xy) = v(x)v(y) for all x, y ∈ k.

(iii) v(x + y) ≤ v(x) + v(y) for all x, y ∈ k.
If additionally v(x+y) ≤ max{v(x), v(y)} for all x, y ∈ k we say that v is a non-Archimedean

valuation. Otherwise it is Archimedean.
We will always suppose that v is not the trivial valuation, i.e. v is not identically 1 on k∗.

Two valuations v and v′ are equivalent if there exists a ∈ R+ such that v′(x) = v(x)a for all
x ∈ k. We call an equivalence class of valuations a place of k and denote by Ω(k) the set of all
places of k.

All Archimedean valuations correspond to v�(x) = |σ(x)| for x ∈ k, where σ : k → C is a
Galois embedding of k in C and |·| stands for the usual norm in C. Moreover, two such valuations
v� and v�0 are equivalent if and only if σ and σ′ are complex conjugate embeddings.

Let now v be a non-Archimedean valuation. The valuation ring

R(v) = {x ∈ k : v(x) ≤ 1}

is a local ring with maximal ideal

P (v) = {x ∈ k : v(x) < 1}

and whose field of fractions is precisely k.
Write Rk for the ring of integers of k. For any prime ideal p in Rk, write vp(x) = N(p)−np (x)

for x ∈ Rk\{0}, where N(p) stands for its norm and np(x) is the largest integer m such that
x ∈ pm. This definition can be extended to k∗ by the rule vp(x/y) = vp(x)/vp(y). This defines
a non-Archimedean valuation, and all non-Archimedean valuations are equivalent to some vp.

If [k : Q] = d, we can write d = r1 + 2r2, where r1 is the number of real embeddings of k and
r2 is the number of complex conjugate pairs of complex embeddings of k. Therefore there are
r1 +r2 Archimedean places on k, which are called infinite places, in contrast to non-Archimedean
places, which are called finite places. We will write Ω∞(k) for the set consisting of the former,
and Ωf (k) for the one consisting of the latter.

For non-Archimedean valuations, any element π such that np(π) = 1 is called a uniformiser.
One has that P (vp) = πR(vp), that is π generates the maximal ideal of R(vp). Moreover, R(vp) is
a principal ideal domain whose ideals are of the form πnR(vp). The quotient fields R(vp)/P (vp)
and Rk/p are isomorphic finite fields of order N(p) and they are called the residue field of p.

Now note that, given a valuation v, the formula dv(x, y) = v(x − y) defines a metric on k.
The field k is not in general a complete metric space. However, for each valuation v one can
consider its completion kv, which is uniquely determined up to isomorphism. One always have
an inclusion iv(k) of k inside kv. Moreover, Archimedean (resp. non-Archimedean) valuations v
on k extend to Archimedean (resp. non-Archimedean) valuations v̂ on kv.

9
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It is known that the only complete fields with Archimedean valuations are R and C, and
that such a valuation must be equivalent to the usual absolute value. As a consequence, for each
infinite place v on k one has kv = R or C.

If v = vp is a non-Archimedean valuation, we write kp = kv for the completion of k with
respect to v. The valuation ring Rp of the extended valuation v̂p on kp is called the ring of p-adic
integers, and it is again a local ring with maximal ideal generated by π ≡ iv(π). Moreover, the
residue fields Rp/πRp and R(vp)/πR(vp) are isomorphic.

Finally, one can prove that every element α ∈ kp can be written uniquely as a power series

α = πr
∞∑

n=0

anπn ,

where r ∈ Z, an ∈ Rp/πRp and a0 ̸= 0.

2.2. Basic properties of quaternion algebras

The following definition works for any field k, but we will only focus on subfields of the
complex field and its localisations (some of the following statements might not be true in char-
acteristic 2). A quaternion algebra A over k is a 4-dimensional central simple k−algebra, i.e. a
k−algebra of dimension 4 without proper two-sided ideals (in the sense of ring theory), whose
centre agrees with the field k. There always exist a, b ∈ k∗ and a basis {1, i, j, ij} of A such that
we can write

A = {x0 + x1i + x2j + x3ij : x0, x1, x2, x3 ∈ k, i2 = a, j2 = b, ij = −ji}.

Note that (ij)2 = −ab. Conversely, any choice of a, b ∈ k∗ defines a quaternion algebra A over
k. Under these conditions we will denote it by the Hilbert symbol A = ( a;b

k ). However different
choices of a and b can lead to isomorphic algebras.

In fact, it is easy to see that, for each a, b, x, y ∈ k∗ one has
(

a, b
k

)
∼=

(
b, a
k

)
∼=

(
a, −ab

k

)
∼=

(
−ab, b

k

)
∼=

(
ax2, by2

k

)
.

Given an element x = x0+x1i+x2j+x3ij, its conjugate is defined as x = x0−x1i−x2j−x3ij.
This allows us to define a reduced norm and a reduced trace on A as

n(x) = xx = x2
0 − ax2

1 − bx2
2 + abx2

3, and tr(x) = x + x = 2x0.

All these definitions do not depend on the choice of basis. The invertible elements of A, the set
of which is denoted by A∗, are precisely those x such that n(x) ̸= 0. We will write A1 ⊂ A∗ for
the subgroup of elements of norm 1.

It is known that any quaternion k−algebra A is either a division algebra or isomorphic to
M2(k). In the case of k being algebraically closed, A is necessarily isomorphic to M2(k) and
therefore there is only one quaternion k-algebra. Division quaternion algebras are characterized
by the fact that x = 0 is the only element with norm zero.

Now write t for
√

a. For any quaternion k-algebra A = ( a;b
k ) one can consider the linear map

(2.1)

ρ : A −→ M2(k(t))
1 7−→

(
1 0
0 1

)

i 7−→
( t 0

0 −t
)

j 7−→
(

0 1
b 0

)

ij 7−→
( 0 t

−bt 0
)

from A into the 2×2 matrices over the quadratic field extension k(t) of k. It is easy to check that
this map determines an isomorphism of k-algebras between A and ρ(A), so one can always regard
any quaternion algebra as an algebra of matrices. Moreover, via this identification the reduced
norm n(x) and the reduced trace tr(x) on A coincide with the matrix determinant det(ρ(x)) and
the matrix trace tr(ρ(x)).

If a = x2 for some x ∈ k, then ρ is an isomorphism between A and M2(k). As a consequence
of this fact and of the previous equivalences of Hilbert symbols, for each b, x ∈ k∗ one has

(
x2, b

k

)
∼=

(
b, x2

k

)
∼=

(
b, −b

k

)
∼= M2(k) .
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2.2.1. Subalgebras, ideals and orders. A k-subalgebra of a k-algebra A is simply a
subset of A which is closed under all the induced operations.

The following theorem is a crucial result on central simple algebras.

Theorem (Skolem–Noether). Let A, B be finite-dimensional central simple k-algebras. For
any two homomorphisms of algebras ϕ, ψ : B −→ A, there exists an invertible element c ∈ A
such that ϕ(x) = cψ(x)c−1 for all x ∈ B.

In particular one has that every endomorphism of a quaternion algebra is in fact an inner
automorphism. Another consequence of the Skolem–Noether theorem is that any isomorphism
between subalgebras of a quaternion algebra is induced by an inner automorphism of A ([27],
Ch. I, Thm 2.1).

We will be interested in certain discrete subsets of quaternion algebras called orders, which
are special cases of other structures called ideals (not to be confused with ring ideals).

First of all, let Rk be the ring of integers of k. Given any k-vector space V , an Rk-lattice
L over V is a finitely generated Rk-module contained in V . We say that L is complete if
L ⊗Rk k = V , that is when extending scalars to generate a k-module one gets the whole vector
space. A complete Rk-lattice in a quaternion algebra is also called an ideal.

One has the following characterization of complete lattices.

Lemma 2.1. Let L and M be Rk-lattices in V . Then M is complete if and only if there
exists an integer a ∈ Rk such that aL ⊂ M ⊂ a−1L.

One can generalise integers in fields to quaternion algebras in the following way. An element
α in a quaternion algebra A is an integer if Rk[α] is an Rk-lattice in A. Integers in a quaternion
algebra A are characterised as the elements α whose reduced norm n(α) and reduced trace tr(α)
both lie in Rk.

It must be noted that integers in quaternion algebras do not behave exactly as integers in
fields. For example, the sum and product of integers is not necessarily an integer. Orders in
quaternion algebras are an analogue of the ring of integers on a field.

An order O in a quaternion algebra A is an ideal which is also a ring with unity. Equivalently,
one can define an order O in A as a ring of integers which contains Rk and such that kO = A.

Every order is contained in a maximal order, that is an order which is maximal with respect
to the inclusion. We call O an Eichler order if it is the intersection of two maximal orders ([27],
p. 20).

In the case where A = M2(k) and Rk is a principal ideal domain, all maximal orders are
conjugate in A to M2(Rk). In general the number of conjugacy classes of maximal orders of A
is called the type number of A.

2.3. Algebras over local �elds. Algebras over global �elds

The easiest examples of quaternion algebras are the division algebra of Hamilton’s quater-
nions H = ( −1;−1

R ) and the algebra of matrices M2(R) = ( 1;1
R ). Note first that ( 1;−1

R ) = ( −1;1
R ) =

M2(R).
Now for every a, b ∈ R \ {0} write a = ±x2 and b = ±y2, and therefore one has that

( a;b
R ) = ( ±1;±1

R ), which will be equal to H or M2(R) depending on whether both a and b are
negative or not, respectively. As a consequence these two are the only quaternion algebras over
the real field.

An analogous situation occurs over p-adic fields.

Theorem 2.1. Let k be a number field and v = vp a non-Archimedean valuation on k
corresponding to the prime ideal p ∈ Rk. The only quaternion algebras over the field kp are the
algebra of matrices M2(kp) and a unique division algebra corresponding to the Hilbert symbol
( u;�

kp
), where u ∈ R∗

p is a unit and π is the uniformiser of vp.

Let now k be a number field and let A = ( a;b
k ) be a quaternion algebra over k. For any

Galois element σ ∈ Gal(C) one can define the quaternion σ(k)-algebra A� = ( �(a);�(b)
�(k) ).
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If L/k is a field extension and A = ( a;b
k ), we can define the quaternion L−algebra A ⊗k

L = ( a;b
L ). In particular, for any valuation v on k we can define the local quaternion algebra

Av = A ⊗k kv, where kv is the localisation of k with respect to v.
If Av is isomorphic to M2(kv) we say that A splits at the valuation v; otherwise we say that

A ramifies at v. The subset of the set of places Ω(k) (resp. of the set of non-Archimedean places
Ωf (k), resp. of the set of Archimedean places Ω∞(k)) consisting of the valuations at which A
ramifies is denoted by Ram(A) (resp. Ramf (A), resp. Ram∞(A)). The valuations v ∈ Ramf (A)
will then correspond to certain primes ideals P, and we can define the discriminant of A as
D(A) =

∏
v∈Ramf (A) P.

One can characterize quaternion algebras over number fields by looking at the places at
which they ramify.

Theorem 2.2. Let A, A′ be quaternion algebras over a number field k. They are isomorphic
if and only if Ram(A) = Ram(A′).

One can prove that A ∼= M2(k) if and only if Av splits for every v ∈ Ω(k). This is a con-
sequence of the Hasse–Minkowski Theorem, which is a powerful local-global result on quadratic
forms.

2.4. Algebras over p-adic �elds. The tree of maximal orders

As before, given an order O in A, for each valuation v on k we can define the order Ov =
O⊗Rk Rv, where Rv is the ring of integers of the local field kv. One has the following global-local
result (see for example [17], Lemma 6.2.7).

Lemma 2.2. Fix an order I in A. Given any other order O in A, for almost every non-
Archimedean valuation v one has Ov = Iv. Moreover, there is a bijection

{orders O ⊂ A} −→ {(Lv)v∈Ωf (k) : Lv is an order in Av,
Lv = Iv for almost all v ∈ Ωf (k)}

O 7−→ (Ov)v∈Ωf (k)

This bijection preserves inclusion.

The fact that Ov and Iv coincide at almost all non-Archimedean localisations follows from
Lemma 2.1, since the element a ∈ Rk given by this lemma will be a unit for almost all vp. It is
also easy to prove that an order O is maximal if and only if all its non-Archimedean localisations
are. Similarly it can be seen that being an Eichler order is also a local-global property.

As a consequence, most of the properties of maximal orders of quaternion algebras over
number fields can be studied by looking at their non-Archimedean localisations. Conveniently,
the p-adic situation is simpler.

Let kp be the localisation of the number field k at a finite place p. As we have seen the ring
of integers Rp has only one maximal ideal P generated by the uniformiser π of vp.

Let A be a quaternion algebra over kp. If A is the unique division algebra over kp, then it
has only one maximal order. On the other hand, if A is isomorphic to M2(kp), then its maximal
orders can be represented as vertices of a regular tree of valency q + 1, where the norm q denotes
the number of elements of the residue class field Rp/P (see [27] pp. 40–41). Two vertices are
joined by an edge if and only if the corresponding maximal orders are conjugate by an element
whose norm is in R∗

pP (see Figure 2.1).
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Figure 2.1. Part of the tree of local maximal orders for q = 5.





CHAPTER 3

Arithmetic Fuchsian groups

3.1. Theorems of Borel{Harish-Chandra and Margulis. Arithmetic triangle groups

Let Γ1, Γ2 be Fuchsian groups. They are said to be commensurable if their intersection has
finite index in both of them, i.e. [Γ1 : Γ1 ∩ Γ2] < ∞ and [Γ2 : Γ1 ∩ Γ2] < ∞. The commensurator
group of a Fuchsian group Γ is then defined as

Comm(Γ) = {γ ∈ PSL(2, R) : [Γ : Γ ∩ γΓγ−1] < ∞ and [γΓγ−1 : Γ ∩ γΓγ−1] < ∞}.

We define the invariant trace field of Γ as the field kΓ = Q(tr(Γ2)) generated by the traces
of the squares of elements of Γ. This is an invariant of the commensurability class of Γ, in other
words any other Fuchsian group commensurable with Γ has the same invariant trace field.

The following is a consequence of a more general theorem by Borel and Harish-Chandra. Let
k be a totally real number field, i.e. a number field all of whose embeddings σ(k) ⊂ C lie in R.
Let A be a quaternion algebra over k ramified at all infinite valuations but one, that is such that

A ⊗k R ∼= M2(R) and
A� ⊗�(k) R ∼= H for every σ ∈ Gal(C) with σ ̸= id.

Note that under these conditions, the injection ρ in equation (2.1) allows us to regard A as
a subalgebra of M2(R). Let O be an order in A and write O1 for its norm 1 group. Then
the subgroup Pρ(O1) ⊂ PSL(2, R), where the P stands for the usual projection SL(2, R) →
PSL(2, R), is a Fuchsian group.

A Fuchsian group Γ is said to be an arithmetic Fuchsian group if it is commensurable with
any such Pρ(O1).

The most classical example of an arithmetic Fuchsian group is PSL(2, Z). It is (the projective
image of) the norm 1 group of the ring of matrices M2(Z), which is an order in the quaternion
Q−algebra M2(Q). Note that this quaternion algebra trivially satisfies the hypothesis above.

Very few among all Fuchsian groups are arithmetic, but they play a central role in many
situations. One of the points in which they differ from the non-arithmetic Fuchsian groups is the
following ([18]).

Theorem (Margulis). Let Γ be a Fuchsian group. Then Γ is non-arithmetic if and only if
Comm(Γ) is an extension of finite index of Γ. Otherwise Comm(Γ) is dense in PSL(2, R).

In the case when Γ is an arithmetic Fuchsian group, then the commensurator Comm(Γ)
coincides with Pρ(A1).

Though in general it is difficult to know at first glance whether a given Fuchsian group is
arithmetic or not, in the case of triangle groups the situation is completely known. In the 70’s
Takeuchi proved that there is only a finite number of arithmetic triangle groups and gave in [26]
an exhaustive list of all such groups (both cocompact and non-cocompact), together with the
inclusions between them.

3.2. Multiple dessins on an arithmetic Riemann surface

Let us recall our main objective. Given a uniform dessin corresponding to the inclusion
K < ∆(l, m, n) of a torsion-free group K in an arithmetic triangle group ∆(l, m, n), we want
to know if there exists β ∈ PSL(2, R) (and how many such elements are there, modulo K) such

15
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that
β−1∆(l, m, n)β β−1∆(l, m, n)β

K
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Let us suppose for now that ∆(l, m, n) corresponds to the norm-1 group of a maximal order
M in a quaternion algebra A, that is ∆(l, m, n) = Pρ(M1). For simplicity we will often write
M1 for ∆(l, m, n).

We want to study now common finite index subgroups K of M1 and β−1M1β and the
possible conjugators β in this configuration. Clearly, conjugation by such a β induces an auto-
morphism of the quaternion algebra, therefore the Skolem–Noether theorem allows to replace β
with a more convenient element α ∈ A. By multiplication with a denominator in the integers of
k we can even suppose α to be in the maximal order M.

Theorem 3.1. Let M1 be the norm 1 group of a maximal order M and suppose that β ∈
SL(2, R) is such that M1 ∩ β−1M1β has finite index in M1 and β−1M1β. Then β can be
replaced with a scalar multiple α ∈ GL(2, R)+ ∩ M ⊂ A.

Under these conditions M1 ∩ α−1M1α is the norm 1 group of an Eichler order E = M ∩
α−1Mα and one has

β−1M1β α−1M1α

E1

CCCC
{{{{{

K
The index of E1 = M1 ∩ α−1M1α in M1 gives a lower bound for [M1 : K] where K denotes

a surface group contained in both M1 and α−1M1α.
For arithmetic triangle groups one has the additional advantage that all quaternion algebras

in question have type number 1 ([26], Prop. 3), therefore all maximal orders are conjugate in A
and all Eichler orders are intersections of conjugate maximal orders. So counting multiple dessins
on H/K amounts to counting maximal orders containing K̂, the preimage of K in SL(2, R).

3.3. Local-global arguments. Congruence subgroups

Maximal orders are easier to classify locally, i.e. over local fields, and the type number 1
property implies that there are bijections between

• prime ideals p in the ring of integers Rk of the center k of the quaternion algebra A
• inequivalent primes elements π in Rk generating these prime ideals (without loss of

generality we will suppose π > 0)
• inequivalent discrete valuations v of A
• inequivalent completions Av = Ap and Mv = Mp of the quaternion algebra and a

maximal order with respect to v
Recall that for a non-Archimedean valuation v = vp, the local algebra Av is a division algebra
if and only if p ramifies in A, i.e. if it belongs to the finite number divisors of the discriminant
D(A). In this case, Mp is the unique maximal order of Ap, and therefore there are no Eichler
orders at all.

In all other (unramified) cases we get matrix algebras Ap ∼= M2(kp), with maximal order
Mp ∼= M2(Rp) where Rp denotes the ring of integers in the local field kp, i.e. the completion of
Rk in kp. This ring has the unique prime ideal P = πRp, and all Eichler orders are conjugate to
a ring of matrices {(

a b
c d

)
with a, b, d ∈ Rp , c ∈ Pn

}

for some positive integer n (Pn is the level of the Eichler order). This local Eichler order is in
fact an intersection Mp ∩ α−1Mpα of two maximal orders conjugate by some α ∈ M∗

p
(

� 0
0 1

)
⊂

M2(Rp).
The study of the local situation will be crucial to get global consequences using local-global

arguments.
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Suppose that the surface group K is included in both ∆ = M1 and α∆α−1 = αM1α−1

for some α ∈ PSL(2, R), so that K is included in the norm 1 group of the Eichler order E =
M ∩ αMα−1. The local situation is the following:

• For all valuations v ∈ Ramf (A) the localised algebra Av contains a unique maximal
order, and therefore Ev = Mv = αMvα−1;

• By Lemma 2.2 there is a finite number of v ̸∈ Ramf (A) such that Mv ̸= αMvα−1.
Local Eichler orders in M2(kv) are easy to study thanks to the tree structure of the maximal

orders, mentioned in section 2.4. Recall that, if the valuation v corresponds to a prime ideal p,
vertices in the tree correspond to maximal orders and two vertices are joined by an edge if and
only if the corresponding maximal orders are conjugate under an element whose norm is in R∗

kp.
The chain of inclusions

Mv > Mv ∩
( p 0

0 1

)−1Mv
( p 0

0 1

)
> . . . > Mv ∩

( p 0
0 1

)−nMv
( p 0

0 1

)n

implies that a local Eichler order Ev = Mv ∩ αMvα−1 is contained in all the maximal orders
corresponding to vertices lying in the path joining Mv and αMvα−1. If Mv and αMvα−1 are
neighbours we will say that E is an Eichler order of level P and, more generally, if the path
joining the two maximal orders has length n, we will say that E is an Eichler order of level Pn.

We begin with the simplest case, which is local Eichler orders of level P. Let q be the number
of elements in the residue field Rv/P ∼= Fq. We have the following result.

Lemma 3.1. Let Mv = M2(Rv) be a local maximal order in Av = M2(kv). The norm 1 group
Φ0 = Φ0(P) of an Eichler order Mv ∩ αMvα−1 of level P has index q + 1 in M1

v. Moreover,
Mv and αMvα−1 are the only maximal orders in which Φ0 is contained.

Proof. If one considers the canonical action of M1
v = M2(Rv) on the projective line P1(Fq)

given by reduction modulo P, the groups Φ0 correspond to the subgroups fixing one point. There
are therefore q + 1 of them, and this number coincides with the index. If the Eichler order was
included in further maximal orders apart from Mv and αMvα−1, it would correspond to a longer
path in the tree of maximal orders, which is a contradiction since it has level P. �

Let O ⊂ A be a maximal order in the quaternion k−algebra A and v ̸∈ Ram(A) an unramified
valuation of A corresponding to the prime p, such that Ov = M2(Rv). Let E(p) denote the local
Eichler order Mv ∩

( p 0
0 1

)−1Mv
( p 0

0 1

)
, whose norm 1 group we have denoted by Φ0(P). We will

write ∆0(p) for the norm 1 group of the Eichler order E in A that corresponds via the bijection
in Lemma 2.2 to the family

{(Ev) : Ev = E(p) if v = p, and Ev = Op, if v ̸= p}.

In the particular case where A = M2(k) and Rk is a principal ideal domain all maximal orders are
conjugate, and we can suppose that O = M2(Rk). Therefore ∆0(p) coincides with the congruence
subgroup

∆0(p) =
{(

a b
c d

)
∈ ∆ ⊂ M2(Rk) : c ≡ 0 mod p

}
.

The following lemma describes the norm 1 groups of the intersections of local Eichler orders
of level P.

Lemma 3.2. Let Mv = M2(Rv) be a local maximal order in Av = M2(kv). Now we consider
M1

v and its subgroups as subgroups of PSL(2, Rv), i.e. modulo ±Id. Then
(i) The norm 1 group Φ0

0 = Φ0
0(P) of the intersection of two Eichler orders of level P has

index q(q +1) in M1
v. Moreover, Φ0

0 is contained in 3 different maximal orders if q > 3,
5 if q = 3 and 4 if q = 2.

(ii) The norm 1 group Φ(P) of the intersection of more than two Eichler orders of level P
is the principal congruence subgroup modulo P of M1

v, a normal subgroup of M1
v of

index 1
2 q(q2 − 1) (omit the denominator 2 if q is a 2−power). It is the intersection of

all such Eichler orders of level P and is included in q + 2 different maximal orders.

Proof. If we consider again the canonical operation of M1
v on the projective line P1(Fq),

the groups Φ0
0 correspond to the elements fixing two points. If more than two points are fixed,
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automatically all points of the projective line are fixed, hence the case in (ii) already gives the
principal congruence subgroup.

The cases q = 2 and 3 play a special role because for them Φ0
0(P) = Φ(P): recall that we see

them as projective groups, and since the determinants are 1, in the case of small q all matrices
in Φ0

0(P) are congruent modP to ± the unit matrix.
For the calculation of the indices one may consult [27] p. 109 or mimic a proof from any

book about modular forms. Alternatively one may consider the groups involved as the stabilizers
of one point, two points or the whole projective line, and then the index is given by the number
of elements in the orbit of the fixed points. �

In a similar way to the case of ∆0(p) and Φ0(P), we can define the principal congruence
subgroup ∆(p) as the subgroup of ∆ whose localisation in p coincides with Φ(P). The existence
and uniqueness of such a subgroup is granted by the Strong Approximation Theorem (see for
example [27] or [17]), which is an extreme version of the Chinese remainder theorem for certain
matrix groups and whose formal statement exceeds the purposes of this course. In the particular
case where A = M2(k) we can again suppose that O = M2(Rk) and therefore

∆(p) =
{(

a b
c d

)
≡

(
1 0
0 1

)
mod p

}
.

Lemma 3.3. For integers n > 1 there are qn−1(q + 1) different local Eichler orders Mv ∩
α−1Mvα of level Pn. Their norm 1 groups Φ0(Pn) have index qn−1(q + 1) in M1

v. The inter-
section of all these norm 1 groups is the principal congruence subgroup Φ(Pn), which is included
in (q+1)(qn−1)

q−1 + 1 different maximal orders.

Proof. To prove that there are precisely qn−1(q + 1) such Eichler orders of level Pn with
norm 1 group Φ0(Pn) one may just count paths of length n in the tree of maximal orders, with
one end fixed in the vertex Mv. For the index formula one may use the same argument of the
previous Lemma, this time defining an action of M1

v on the “fake projective line” P1
m over the

residue class ring Rk/pm ∼= Rv/Pm, which is the set of pairs of residue classes, not both in
pRk/pm, modulo the unit group of this residue class ring (see also [27] p. 55).

The intersection of all Eichler orders of level Pn is then included in all the maximal orders
at distance n from Mv. �

As an illustration for the result concerning the principal congruence subgroups, we show in
Figure 3.1 the picture of the subtree for Φ(p2) in the case q = 7. We can define global principal
congruence subgroups ∆(pn) of higher level in the same way as above.

Figure 3.1. Subtree for Φ(p2) in the local algebra Ap for q = 7
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3.4. Global consequences

We have the following necessary condition for the existence of at least two different uniform
dessins of the same type on a Riemann surface of genus g > 1. This result will be crucial for the
construction of low genus examples.

Theorem 3.2. Let K be an arithmetic Fuchsian surface group contained in the triangle
group ∆ = ∆(l, m, n), and suppose that ∆ is the norm 1 group M1 in a maximal order M of a
quaternion algebra A defined over the totally real field k with ring of integers Rk. The group K
is contained in more than one triangle group of type (l, m, n) if and only if K is contained in a
group conjugate in ∆ to ∆0(p), where p is a prime of k not dividing the discriminant of A.

Proof. Suppose first that K < ∆∩α∆α−1 for some α ∈ PSL(2, R). We can suppose α ∈ A
by the Skolem–Noether Theorem, and then by Lemma 2.2 there exists at least one valuation
p ̸∈ Ram(A) such that Mp ̸= αMpα−1. For this valuation, we can suppose modulo conjugation
that Mp ∩ αMpα−1 ⊂ E(p), and therefore K < ∆ ∩ α∆α−1 < ∆0(p).

The converse follows directly from the definitions. �

To understand Theorem 3.2 and construct examples in low genus, suppose that K < ∆0(p)
for some p ̸∈ Ram(A). This group ∆0(p) is always contained in the so called Fricke extension
∆Fr

0 (p) which, in the case of A = M2(k), is the index two extension of ∆0(p) by the element

α =
1

√
p

(
0 p

−1 0

)
∈ PSL(2, R),

where p is chosen to be totally positive. This element clearly normalises ∆0(p), but not ∆. The
action induced by conjugation on ∆0(p) is called the Fricke involution. As a consequence the
group K < ∆0(p) is included in both ∆ and α∆α−1, yielding two different uniform dessins in
H/K. In the ramified case, the Fricke involution can be seen in the localised algebra Ap as the
element

( 0 1=p
−1 0

)
, which interchanges by conjugation Mv and

( p 0
0 1

)−1Mv
( p 0

0 1

)
, and therefore

fixes E(p).
Now we will concentrate on a series of striking examples. Take ∆ of signature (2, 3, 7).

According to [26] this is the norm 1 group of a maximal order M in a quaternion algebra A over
the cubic field k = Q(cos 2�

7 ).
It is well known that Hurwitz curves are uniformised by normal subgroups K of the triangle

group ∆(2, 3, 7) and that, in particular, one has Aut(S) ∼= ∆(2, 3, 7)/K. A classical theorem by
Macbeath ([15]) shows that PSL(2, Fq) is a Hurwitz group exactly in the following cases

(i) q = 7,
(ii) q = p prime for p ≡ ±1 mod 7,

(iii) q = p3 for p prime and p ≡ ±2 or ± 3 mod 7.
Accordingly, the corresponding Riemann surfaces are usually known as Macbeath–Hurwitz curves.

It was proved in [4] by A. Dzǎmbić that all Macbeath-Hurwitz curves can be constructed
arithmetically as follows. The triangle group ∆(2, 3, 7) is the norm 1 group of a maximal order in
the quaternion A over the field k = Q(cos π/7) which is ramified exactly over the two non-trivial
Archimedean valuations of k. Any rational prime p defines an ideal pRk in Rk such that

(i) if p = 7 then p is ramified and pRk = p3 for a prime ideal p ⊂ Rk of norm q = N(p) = 7;
(ii) if p ≡ ±1 mod 7 then p splits, i.e. pRk = p1p2p3 for prime ideals p1, p2, p3 ⊂ Rk of

norm q = N(pi) = p;
(iii) if p ≡ ±2 or ± 3 mod 7 then p is inert, i.e. pRk is a prime ideal in Rk of norm

q = N(p) = p3.
For every prime p in Rk we can define the principal congruence subgroup of ∆(2, 3, 7) corre-
sponding to the prime p. This is a normal torsion-free subgroup of ∆(2, 3, 7) with quotient group
isomorphic to PSL(2, Fq) where q = N(p), yielding therefore a Macbeath-Hurwitz curve.

The first cases are:
• Klein’s quartic. Its surface group is ∆(p) for a prime p dividing 7, ramified of order 3

and of residue degree 1 in the extension Q(cos 2�
7 )/Q. With q = 7 we see that Klein’s

quartic has 8 conjugate uniform dessins of type (2, 3, 7) plus the usual regular one.
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• Macbeath’s curve of genus 7 with automorphism group PSL(2, F8) has the surface group
∆(2) for the prime p = 2, inert and of residue degree 3 in the extension Q(cos 2�

7 )/Q.
With q = 8 one has 9 uniform dessins plus a regular one on the curve.

• Three non-isomorphic curves in genus 14 whose automorphism groups are isomorphic to
PSL(2, F13) and whose surface groups are the principal congruence subgroups ∆(pj), j =
1, 2, 3 for the (completely decomposed) primes pj dividing 13. Their residue degree is
1, hence one has q +1 = 14 uniform dessins of type (2, 3, 7) on each curve plus a regular
one.

All dessins mentioned here are clearly not renormalisations of each other since the signature
consists of three different entries. On the other hand, in all these cases we have one regular
dessin and q + 1 uniform non-regular ones which form an orbit under the automorphism group
of the curve: the q + 1 norm 1 groups of type ∆0(p) are conjugate under the action of ∆ (in
other words, the q + 1 Eichler orders of level P form a ∆−invariant set), so these dessins are
equivalent under automorphisms of the curve.

One can consider the growth of the maximal number of uniform dessins on surfaces H/K,
as a function of the index [∆ : K] in a given triangle group. Global-local arguments yield the
following bound.

Theorem 3.3. Let the Fuchsian group ∆ be the norm 1 group of a maximal order in a
quaternion algebra. For each positive integer m > 0, the maximum number of conjugates of
∆ in which any Fuchsian group K < ∆ of index at most can be included is O( 3

√
m) and this

upper bound is optimal in the following sense. There are sequences of surface groups Kn < ∆
with indices [∆ : Kn] → ∞ such that, if we write dn for the number of all residue classes
α ∈ PSL(2, R)/N(∆) with the property Kn ⊂ α∆α−1, we have

lim
n→∞

dn
3
√

2[∆ : Kn]
= 1.

The proof of this result follows from considering local bounds and applying a local-global
argument based on the Strong Approximation Theorem. For the sequence Kn one may take
any sequence of principal congruence subgroups ∆(p) with prime ideals P = pRv such that
Rk/p ∼= Fq, with q → ∞. Observe that only finitely many among the Kn can have torsion.

However, in these examples we have only the rather modest number of two essentially differ-
ent (non-isomorphic) dessins of the same type. Nevertheless, replacing these congruence groups
with subgroups of small index we can remove automorphisms such that most of the uniform
dessins found here become inequivalent. As a consequence, and describing the growth result
given in Theorem 3.3 in terms of the genus, we get the following corollary.

Corollary 3.1. The number of uniform dessins not equivalent under renormalisation or
automorphisms on a Belyi surface grows with the genus g at most as a multiple of 3

√g, and this
bound is optimal.

We refer to [9] for full details of the proofs.

3.5. Examples in low genus

We explore now the examples given in section 3.4 in a more geometrical way.

3.5.1. Klein’s quartic. Klein’s quartic is a genus three surface uniformised by a group K
generated by certain side-pairings in the regular 14-gon P with angle 2π/7 (see Figure 3.2). The
(black and white) triangles in Klein’s original picture are related to the triangle group ∆(2, 3, 7)
of signature (2, 3, 7) in which K is normally contained with index 168.

The inclusion K C ∆(2, 3, 7) induces a regular Belyi function on K. The corresponding
regular dessin D can be easily depicted in P with the help of the triangle tessellation associated
to ∆(2, 3, 7) (see left picture on Figure 3.3).

Now rotate D, or rather its lift to the universal covering D, by an angle 2π/14 around the
origin. The graph D′ obtained is compatible with the side-pairing identifications, hence it is a
well defined dessin on the surface. It is rather obvious that D′ decomposes the surface into 24
heptagons in the same way as D does. In other words D′ is also a uniform (2, 3, 7) dessin on
H/K (see right picture on Figure 3.3). Note that the rotation that transforms D into D′ does
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Figure 3.2. Klein’s surface is obtained by the side pairing 1 ↔ 6, 3 ↔ 8,
5 ↔ 10, 7 ↔ 12, 9 ↔ 14, 11 ↔ 2, 13 ↔ 4.

Figure 3.3. Klein’s regular (2, 3, 7) dessin D and a uniform one D′.

not correspond to any automorphism of the surface, and in fact both dessins are not isomorphic
since D′ is not regular (it can be checked that the automorphism group Aut(S) does not act
transitively on the edges of this new dessin).

This existence of a new uniform dessin of type (2, 3, 7) is clear if one studies all triangle
groups in which K is contained. The group K corresponds to ∆(p), for a prime p dividing 7
in Q(cos π/7). The surface group K is a normal subgroup of ∆(2, 3, 7), but it is also contained
normally in the group ∆(7, 7, 7) that has one seventh of the 14-gon as fundamental domain. The
corresponding regular (7, 7, 7)−dessin lies in the border of the polygon: it has one black vertex,
one white vertex, and seven edges. There is even a group ∆(3, 3, 7) lying between ∆(7, 7, 7)
and ∆(2, 3, 7) that defines another regular dessin of type (3, 3, 7). The chain of inclusions K <
∆(7, 7, 7) < ∆(3, 3, 7) < ∆(2, 3, 7) means that the corresponding regular dessins are related by
refinement. Moreover, it can be checked that this group ∆(3, 3, 7) corresponds to ∆0(p), and
therefore one has an index two extension ∆Fr

0 (p) = ∆(2, 3, 14). In fact, the full diagram of
triangle groups lying above K can be found looking at Singerman’s inclusion list:
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(3.1) ∆(2, 3, 14) ∆(2, 3, 7)

∆(2, 7, 14)

ppppppppppp
∆(3, 3, 7)

MMMMMMMMMM

∆(7, 7, 7)

NNNNNNNNNNN

qqqqqqqqqq

K

oooooooooooo

The groups ∆(2, 7, 14) and ∆(2, 3, 14) are the index two (therefore normal) extensions of
∆(7, 7, 7) and ∆(3, 3, 7) obtained by addition of a new element ρ (which induces the Fricke
involution of ∆0(p)) which is a rotation of angle 2π/14 around the origin. The corresponding
dessins of type (2, 7, 14) and (2, 3, 14) are not regular but only uniform (as already noticed in [24]),
and are obtained from those of types (7, 7, 7) and (3, 3, 7) by colouring all the vertices with the
same colour, say black, and then adding white vertices at the midpoints of the edges.

Conjugation of diagram (3.1) by ρ fixes all the groups except K and ∆(2, 3, 7):

(3.2) ∆(2, 3, 14) ∆(2, 3, 7) ρ∆(2, 3, 7)ρ−1

∆(2, 7, 14)

ppppppppppp
∆(3, 3, 7)

MMMMMMMMMMM

ooooooooooo

∆(7, 7, 7)

NNNNNNNNNNN

qqqqqqqqqq

K

pppppppppppp
ρKρ−1

MMMMMMMMMM

The inclusion K < ρ∆(2, 3, 7)ρ−1 corresponds to the uniform dessin D′ described above.
Since the normaliser of K is ∆(2, 3, 7) the inclusion of K in the triangle group ρ∆(2, 3, 7)ρ−1 is
not normal, hence D′ is not regular.

Now we focus in the group ∆(3, 3, 7) lying in the middle of diagrams (3.1) and (3.2). It is a
known fact ([10]) that a given triangle group of type (3, 3, 7) is contained in precisely two different
groups of signature (2, 3, 7), i.e. ∆(2, 3, 7) and ρ∆(2, 3, 7)ρ−1 in our case. Conversely, any given
∆(2, 3, 7) contains eight different subgroups of signature (3, 3, 7), all conjugate in ∆(2, 3, 7). From
the point of view of local quaternion algebras, this is a consequence of Lemmas 3.1 and 3.2.

Let a0∆(3, 3, 7)a−1
0 = ∆(3, 3, 7), a1∆(3, 3, 7)a−1

1 , . . . , a7∆(3, 3, 7)a−1
7 be the 8 subgroups of

∆(2, 3, 7) conjugate to ∆(3, 3, 7), with ai ∈ ∆(2, 3, 7).
If we conjugate diagram (3.2) by ai we get

(3.3) ai∆(2, 3, 14)a−1
i ∆(2, 3, 7) aiρ∆(2, 3, 7)ρ−1a−1

i

ai∆(2, 7, 14)a−1
i

qqqqqqqqqqq
ai∆(3, 3, 7)a−1

i

MMMMMMMMMM

ooooooooooo

ai∆(7, 7, 7)a−1
i

MMMMMMMMMMM

qqqqqqqqqq

K

qqqqqqqqqqqqq
aiρKρ−1a−1

i

MMMMMMMMMM
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Note that only ∆(2, 3, 7) and K remain fixed by this conjugation, since ai belongs to
∆(2, 3, 7), the normaliser of K.

The inclusion K < aiρ∆(2, 3, 7)ρ−1a−1
i induces a new uniform (but not regular) dessin of

type (2, 3, 7) on H/K. It is related to the uniform dessin D′ by the automorphism induced by ai,
and to the regular dessin D by a hyperbolic rotation of angle 2π/14 around the center of certain
face of D.

3.5.2. Macbeath’s curve of genus seven. The description of the uniform (2, 3, 7) dessins
on Macbeath curve goes more or less along the same lines as in the case of Klein’s quartic. Again
the surface group K is included normally in ∆(2, 3, 7). The role played by the group ∆(3, 3, 7)
in Klein’s quartic is played here by ∆(2, 7, 7), which this time corresponds to ∆0(2). Note that
the inclusion ∆(2, 7, 7) < ∆(2, 3, 7) is also very special (cf. [10]). The number of conjugate
subgroups of type (2, 7, 7) inside ∆(2, 3, 7) is nine, and any given ∆(2, 7, 7) is contained in two
different groups of type (2, 3, 7) (this is again consequence of Lemmas 3.1 and 3.2. The normaliser
of ∆(2, 7, 7) is now a (2, 4, 7)–group obtained by adding a rotation ρ of order 4 around any of
the points of order 2 in ∆(2, 7, 7).

This new element does not normalise ∆(2, 3, 7), so conjugation by ρ gives rise to the second
group ρ∆(2, 3, 7)ρ−1 in which ∆(2, 7, 7) is included:

(3.4) ∆(2, 4, 7) ∆(2, 3, 7) ρ∆(2, 3, 7)ρ−1

∆(2, 7, 7)

MMMMMMMMMM

ooooooooooo

K

qqqqqqqqqqqq
ρKρ−1

OOOOOOOOOOO

The inclusion of K inside ∆(2, 3, 7) and ρ∆(2, 3, 7)ρ−1 determines two non isomorphic dessins
on Macbeath’s curve. Once more the second inclusion is not normal, and accordingly the second
dessin is uniform but not regular.

Figure 3.4. Face decomposition associated to regular and uniform dessins of
type (2, 3, 7) on Macbeath’s surface.

We can proceed in the same way with the other eight (2, 7, 7)–groups contained inside
∆(2, 3, 7) to get diagrams similar to diagram (3.3). This way we find the nine (isomorphic)
uniform dessins predicted by the arithmetic arguments of Section 3.4. There is obviously as well
a uniform dessin of type (2, 4, 7), as already noticed in [24].

3.5.3. Macbeath-Hurwitz curves of genus 14. The third example given in section 3.4
arises from the consideration of the three (torsion free) groups Ki = ∆(pi) C ∆(2, 3, 7) for
inequivalent primes p1, p2 and p3 dividing 13 in Q(cos �

7 ). These groups correspond to three
Galois conjugate curves of genus 14 with a regular (2, 3, 7) dessin ([25]).
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Now for each of these primes, we find ∆0(pi) lying between ∆(pi) and ∆(2, 3, 7). Its index
inside ∆(2, 3, 7) is 14. By Singerman’s method for the determination of signatures of subgroups
of Fuchsian groups ([22]) it can be seen that ∆0(pi) is a group of signature ⟨0; 2, 2, 3, 3⟩.

There is again an element ρi in the normaliser of ∆0(pi) that conjugates ∆(2, 3, 7) into a
different group. The inclusion of ∆(pi) inside ρi∆(2, 3, 7)ρ−1

i is no longer normal and gives rise
to a non-regular uniform dessin on the same Riemann surface.

Moreover, ∆(2, 3, 7) contains 14 different subgroups conjugate to ∆0(pi). All of them include
∆(pi), therefore arguing as above we find 14 isomorphic uniform (2, 3, 7) dessins.
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