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Structure, crystal chemistry, and compressibility of iron-rich silicate perovskite 
at pressures up to 95 GPa.

I. Koemets1, Z. Liu2, E. Koemets1, B. Wang1, C. McCammon1, T. Katsura1, M. Hanfland3, A. Chumakov3, L. Dubrovinsky1
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1. Introduction
Bridgmanite elasticity is influenced by chemical composition,

oxygen vacancies, and pressure-induced high-spin to low-spin
transition in iron. The effect of pressure-driven spin transition(s) in
iron-bearing bridgmanite on bulk modulus is complex, because iron
could occupy different crystallographic sites and can occur as both
ferrous and ferric. In addition, high-pressure experiments with silicate
perovskite end-members could provide us with a self-consistent
elasticity database and clarify mechanism(s) of cations substitution.

2. Methods
Samples synthesis in Large Volume Press, diamond anvil cells for

pressure generation, synchrotron radiation based in situ single-crystal
X-ray diffraction, and Mössbauer spectroscopy.

4. Results: Compressibility

Cold compression behaviour of Fe0.5Mg0.5Si0.5Al0.5O3 and Fe0.96Mg0.5Si0.54O3 

Black lines represent fits of P-V data with second order Birch-Murnaghan EoS. Blue lines are
data from (Lin et al., 2000).At pressures above ~10 GPa samples with both compositions
transform to (pseudo) orthorhombic perovskite-type structured phases. Inset: Above 40 GPa
softening of the phase is obvious and related to spin transition of Fe3+ located in the B’-site of

double-perovskite.

3. Results: Structures and their relations

Crystal structures of Fe0.5Mg0.5Al0.5Si0.5O3 (a, b) and Fe0.96Mg0.5Si0.54O3 (c, d) silicate phases 
and their structural relations 
(a,c) Phases stable at P<10 GPa, (b,d) Phases stable at P>10 GPa. Distinguishable 
crystallographic sites are different in color. pA refers to prismatic A-site, oB and oB’ refers to 
octahedral B- and B’-site

5. Results: Crystal chemistry

Compressibility of  individual polyhedra in Al-rich silicate perovskite (black) and Al-poor 
silicate double perovskite (red). 

6. Results: Mössbauer spectroscopy

A summary of quadrupole splitting and centre shift of silicate perovskite samples at high
pressure.
For comparison, we plotted data from previous studies involving data collection on Fe-bearing
bridgmanites. Liu et al. 2018 (stars) used nuclear forward scattering; Sinmyo et al. 2017
(crosses) and Potapkin et al. 2013 (triangles) used SMS.

Key points:
 First silicate double-perovskite
 New corundum-structure derivative
 Fe,Mg-bearing octahedral site in dPv
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