Goethe-Universität Frankfurt Institut für Mathematik Wintersemester 2019/20 22. Oktober 2019

Funktionentheorie und gew. DGLen Prof. Dr. Martin Ulirsch Felix Röhrle

Übungsblatt 1

Aufgabe 1 (3 Punkte)

Bestimmen Sie den Konvergenzradius der trigonometrischen Potenzreihen

$$\cos(z) = \sum_{n \ge 0} (-1)^n \frac{z^{2n}}{(2n)!} \quad \text{und} \quad \sin(z) = \sum_{n \ge 0} (-1)^n \frac{z^{2n+1}}{(2n+1)!} .$$

Aufgabe 2 (4 Punkte)

Für $\alpha \in \mathbb{C}$ und $n \in \mathbb{N}$ sei der verallgemeinerte Binomialkoeffizient definiert durch

$$\begin{pmatrix} \alpha \\ 0 \end{pmatrix} = 1$$
 und $\begin{pmatrix} \alpha \\ n \end{pmatrix} = \prod_{j=1}^{n} \frac{\alpha - j + 1}{j}$.

Die Binomialreihe ist gegeben als

$$b_{\alpha}(z) = \sum_{n>0} \binom{\alpha}{n} z^n .$$

- (a) Bestimmen Sie den Konvergenzradius R von $b_{\alpha}(z)$.
- (b) Zeigen Sie, dass für $\alpha, \beta \in \mathbb{C}$ und alle $z \in B_R(0)$ die Formel $b_{\alpha+\beta}(z) = b_{\alpha}(z) \cdot b_{\beta}(z)$ gilt.

Aufgabe 3 (4 Punkte)

Sei $k \in \mathbb{N}$. Bestimmen Sie den Konvergenzradius R der Potenzreihe

$$P_k(z) = \sum_{n>0} \binom{n+k}{k} z^n$$

und bestimmen Sie die Grenzfunktion.

Aufgabe 4 (3 Punkte)

Sei $f: \mathbb{C} \to \mathbb{C}$ eine holomorphe Funktion, für die es eine Konstante $c \in \mathbb{C}$ mit $f'(z) = c \cdot f(z)$ für alle $z \in \mathbb{C}$ gibt. Zeigen Sie, dass f von der Form $f(z) = ae^{cz}$ ist und dass a = f(0).

Aufgabe 5 (2 Punkte)

Sei $U \subseteq \mathbb{C}$ offen und $f: U \to \mathbb{C}$ holomorph. Wir schreiben f = u + iv und z = x + iy. Es folgt aus der Holomorphie, dass u und v zweimal stetig partiell differenzierbar sind (soweit sind wir in der Vorlesung noch nicht, für diese Aufgabe dürfen Sie das aber als bekannt annehmen).

Zeigen Sie, dass u und v harmonische Funktionen sind, d.h. sie erfüllen die Laplace'schen Differenzialgleichungen:

$$\begin{split} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} &= 0 \\ \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} &= 0 \ . \end{split}$$

Aufgabe 6 (4 Punkte)

Seien U, V zwei offene Teilmengen von \mathbb{C} . Eine bijektive holomorphe Abbildung $f: U \to V$ heißt biholomorph, wenn die Umkehrabbildung $f^{-1}: V \to U$ wieder holomorph ist.

Sei H die obere Halbebene, gegeben durch

$$\mathbb{H} = \left\{ z \in \mathbb{C} \middle| \operatorname{Im}(z) > 0 \right\}$$

und \mathbb{D} die offene Einheitskreisscheibe, gegeben durch

$$\mathbb{D} = \{ z \in \mathbb{C} | |z| < 1 \} .$$

Zeigen Sie, dass die Cayley-Transformation, die durch

$$h(z) = \frac{z - i}{z + i}$$

gegeben ist, eine biholomorphe Abbildung $h \colon \mathbb{H} \to \mathbb{D}$ definiert.