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Distributed setting

Data distributed across many users, each user with one observation.
Central server wants to perform specific task on the whole data.
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Users can only send simultaneously a message to the server, do not get
to interact between themselves.

(May or may not share a common random seed ahead of time.)



Distributed setting

Noninteractive
Users can only send simultaneously a message to the server, do not get
to interact between themselves.

(May or may not share a common random seed ahead of time.)



Distributed setting

(Sequentially) interactive
Users send a message to the server sequentially, and see messages sent
by users before them.

(Can assume they also share a common random seed.)
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Users send a message to the server sequentially, and see messages sent
by users before them.

(Can assume they also share a common random seed.)



Distributed setting

Note: there exist other settings which allow for more adaptivity:
multi-round sequential protocols, blackboard protocols.

Focus here on the sequentially interactive model, and whether
sequentially interactive � noninteractive.
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Inference tasks

Focus on density estimation (learning) and identity testing (one-sample
goodness-of-fit) for discrete distributions



Inference tasks

Density estimation
n independent samples from unknown p over [k] = {1, 2, . . . , k}, distance
parameter ε ∈ (0, 1]. Output p̂ such that

`1(p, p̂) ≤ ε

with high probability.



Inference tasks

Identity testing
n independent samples from unknown p over [k] = {1, 2, . . . , k},
reference distribution q, distance parameter ε ∈ (0, 1]. Distinguish
between

H0 : p = q H1 : `1(p,q) > ε

with high probability.



Inference: our goal

(Minimax) sample complexity
Characterize the minimum number of independent samples n to solve the
task, as a function of k and ε, over all possible p,q.
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Information constraints

Each user cannot simply send or fully observe their datum (sample) to
the server.

I sensitive data (untrusted server)

I bandwidth constraints

I limited type of measurements

I etc.
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Information constraints

Model that type of constraints in a unified fashion by a family W of
allowed channels W : [k]→ {0, 1}∗:
I each user chooses some W ∈ W
I given data x sends message y with probability W (y | x)



Examples of information constraints

No constraint: Identity ∈ W
Bandwidth constraints: messages are at most ` bits long.

W = {W : [k]→ {0, 1}`}

Local privacy constraints: messages must satisfy %-local differential
privacy (%-LDP)

W = {W : [k]→ {0, 1}∗ : sup
x,x′

sup
y

W (y | x)

W (y | x ′)
≤ e%}

Linear measurements, erasure channels, quantization, “leaky-query”. . .
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Interactive Inference under Information Constraints

X1 X2 X3
. . . Xn−2 Xn−1 Xn

W1 W2 W3
. . . Wn−1 Wn−1 Wn

Y1 Y2 Y3
. . . Yn−2 Yn−1 Yn

p

Server

output
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Adaptivity. . .
. . . has a long history in Statistics, and a (much shorter, but very active)
history in computer science and machine learning.

Yet

in many cases we don’t understand how adaptivity helps in designing a
protocol, or choosing a channel.
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Information constraints

Can we establish learning and testing lower bounds in a unified way?

Power of sequential interactivity

Does adaptivity help for these tasks? If so, for which types of constraints?

Conceptual message

Can we use the lower bounds to design better protocols (upper bounds)?



Establish learning and testing lower bounds in a unified way

To each channel W , we associate a channel information matrix H(W ),
and set

‖W‖op = sup
W∈W

‖H(W )‖op, ‖W‖∗ = sup
W∈W

‖H(W )‖∗

Establish bounds as a function of those spectral quantities:

how much can the users
communicate by (adaptively)

choosing their channels
⇐⇒

which directions in Rk can the
channels let the users provide

most information about



Establish learning and testing lower bounds in a unified way

Learning Testing

Constraints W Noninteractive Interactive Noninteractive Interactive

No constraint k
ε2

√
k

ε2

General k
ε2 · k

‖W‖∗

√
k

ε2 ·
√
k

‖W‖F

√
k

ε2 ·
√
k√

‖W‖∗‖W‖op

Bandwidth k
ε2 · k

2`

√
k

ε2 ·
√

k
2`

√
k

ε2 ·
√

k
2`

Privacy k
ε2 · k

%2

√
k

ε2 ·
√
k

%2

√
k

ε2 ·
√
k

%2

“Leaky-Query” k
ε2 ·
√
k

√
k

ε2 ·
√
k

√
k

ε2 · 4
√
k

(Bounds for noninteractive inference with a common
random seed available to the users.)



Establish learning and testing lower bounds in a unified way

Consider the “local perturbation” around the reference uniform
distribution u: for z ∈ {−1, 1}k/2,

∀x ∈ [k], pz(x) =

{
1−2εzi

k if x = 2i − 1
1+2εzi

k if x = 2i

For fixed interactive protocol Π, pz induces a distribution pΠ
z over

messages Y n = (Y1, . . . ,Yn).

Goal

Assouad (learning) Le Cam (testing)

k .
k/2∑
i=1

I (Zi ∧ Y n) ≤ bound 1 . KL(EZ [pΠ
Z ]‖uΠ) ≤ bound

with bound as a function of n,W, k, ε.



Establish learning and testing lower bounds in a unified way

Theorem (Information Bound)

For every 1 ≤ t ≤ n,

1

k

k∑
i=1

I (Zi ∧ Y t) ≤ tε2

k2
· ‖W‖∗.

Theorem (Testing Bound)

KL(EZ [pΠ
Z ]‖uΠ) ≤ ε2

k
‖W‖op ·

n−1∑
t=0

k∑
i=1

I (Zi ∧ Y t).

(actually slightly more refined, term-wise bounds)



Adaptivity can help (but sometimes doesn’t)

Immediate corollaries
Interactivity does not help for learning or testing under privacy or
communication constraints.

But. . .
It may help for constraints W s.t. ‖W‖F �

√
‖W‖∗‖W‖op.

This is possible

We provide a “natural” family a constraint W showing a maximal
separation (factor k1/4) for identity testing.



Adaptivity can help (but sometimes doesn’t)

Leaky-Query constraints: W = {W u}u∈{0,1}k

Wu(y | x) =


η if y = x

(1− η)ux if y = 1∗

(1− η)(1− ux) if y = 0∗

(η ≈ 1/
√
k : leakage parameter).

Meaning
Leaks the full data point w.p. η, otherwise indicates whether it belongs
to the query set Su ⊆ [k].

Adaptivity helps for these!



Lower bound proof hints at what to do

Testing: set q = EZ [pΠ
Z ]. Lower bound framework gives

KL(qΠ‖uΠ) ≤ ε2

k
‖W‖op ·

n−1∑
t=0

k∑
i=1

I (Zi ∧ Y t).

How: using first chain rule, then χ2 divergence

EqY t

[
KL(qYt+1|Y t

‖uYt+1|Y t

)
]

≤ EqY t

[
χ2(qYt+1|Y t

, uYt+1|Y t

)
]

= k · EqY t

∑
y

(∑
x W

Y t

(y | x)(qXt+1|Y t (x)− 1
k )
)2

∑
x W

Y t (y | x)


=
ε2

k
EqY t

[
E
[
Z
∣∣ Y t

]T
H(W Y t

)E
[
Z
∣∣ Y t

]]
. (?)



Lower bound proof hints at what to do

Key step: bounding this bilinear form

E
[
Z
∣∣ Y t

]T
H(W Y t

)E
[
Z
∣∣ Y t

]
≤ ‖H(W Y t

)‖op · ‖E
[
Z
∣∣ Y t

]
‖2

2,

Not tight in general, but suggests protocol: user t picks channel W ∈ W
s.t. H(W ) maximizes bilinear form. Depends on the structure of the
spectrum of the H(W )s and the set of achievable eigenvectors!

 Heuristic, but leads to optimal protocol for leaky-query channels.



Conclusion
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I Plug-and-play bounds for density estimation and identity testing of
discrete distributions

I Corollary: tight bounds for privacy and communication constraints

I Separation between noninteractive and interactive protocols for
composite hypothesis testing under natural class of constraints

I New versatile lower bound technique: further extensions to
high-dimensional estimation, optimization. . .
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Yanjun Han, Ayfer Özgür, and Tsachy Weissman.

Geometric lower bounds for distributed parameter estimation under communication
constraints.
In Proceedings of the 31st Conference on Learning Theory, COLT 2018, volume 75 of
Proceedings of Machine Learning Research, pages 3163–3188. PMLR, 2018.

Or Sheffet.

Locally private hypothesis testing.
In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
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