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Outline

I Motivating examples: signal detection, large-scale testing problems
for sparse mixtures and feature selection in high-dimensional
classification.

I CsCsHM – the new family of statistics via EFKP upper-class
weighted functions for detecting sparse and weak effects.

I Previous work: fundamental phase diagram and Tukey’s ”higher
criticism”(HC) statistics. Motivation for improvements.

I Applications of CsCsHM to feature thresholding in classification.
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Detection of sparse signals

Detection of sparse mixtures is an important statistical problem that arises

I in Signal Processing: the goal is to detect the existence of a signal which
only appears in a small fraction of the noisy data

I in Genomics and Genetics: the goal of genome-wide association studies
(GWAS) is to identify positions j = 1, . . . , p of single-nucleotide
polymorphis (SNP) in the genome; a typical value of p is ≈ 106 while
sample size is in low thousands

I in Astrophysics and Cosmology: The Kuiper Belt containing small solar
system bodies which date back to the formation of the solar system. They
contain clues to conditions in the early solar nebula. TAOS
(Taiwanese-American Occultation Survey generating 1011 tests per year
where the number of occultations ranges from ten to few thousands. A
small objects about 1 km diameter passes in front of a star and the star
will blink out. Estimation of the rate of these occultation events is one of
the primary science goals of TAOS.)

Tatjana Pavlenko Large-scale statistical inference



Occultation
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Terminology for sparsity and weakness

What we will be talking about:

I Very high-dimensional observations

I High-dimensional underlying parameter vector

I Most parameter entries ‘small’ or ‘uninteresting’ for the project at
hand. Interesting values ‘scattered’ about in parameter vector.

I Historically ...

What we will not be talking about:

I Sparsity of data (paucity low counts)

I Sparsity of matrices (e.g. numerical linear algebra)
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A two-group model

I We are interested in making inference based on n units, each represented
by a summary statistic X . The cases are either null or non-null, with
non-null units exhibiting interesting patterns of abnormal behavior.

I We do not know the true states of nature but observe a mixture of null-
and non-null cases.

I To model sparse data we posit a mixture model

X1, . . . ,Xn
iid∼ (1− εn)F0 + εnF1,

εn the mixing proportion is small, F0 and F1 are null and alternative
distributions.
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Motivating examples

Example 1: One of the earliest work on multi-channel detection in
radio-location dates back to Dobrushin (1958).

Let {Xi}ni=1
iid∼ Ray (αi ), with the density 2x

αi
exp(− x2

αi
), x ≥ 0, representing the

random voltages observed on n channels. In the absence of noise, all αi = 1
(nominal value); in the presence of signal, exactly one of the αi ’s becomes a
known value α > 1. The goal is to test competing hypotheses

H0 : αi = 1, 1 ≤ i ≤ n,

versus n-dependent alternative

H1,n : αi = 1 + (α− 1)1{i=J}, J∼U([1, n]).

Since the signal only appears ones out of the n, in order to distinguish it from
noise, it is necessary for the amplitude α to grow with the sample size, n (in
fact, at least logarithmically).

Dobrushin proved log-likelihood ratio convergence to a stable distribution as
n→ ∞ and obtained sharp asymptotics of the smallest α to achieve the desired
false alarm and miss detection levels.
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Motivating examples

Example 2: Two-component sparse Gaussian mixture, see e.g. Ingster (1997)
and Donoho & Jin (2004) (also Ingster et al (2009), Meinshausen and Rice
(2008) and Cai et al (2014))

H0 : X1, . . . ,Xn
iid∼ N(0, 1), vs

H1,n : Xi
iid∼ (1− εn)N(0, 1) + εnN(µn, 1), 1 ≤ i ≤ n.

Example 3: Heteroscedastic two-component Gaussian mixture model. The
signal itself varies among the non-null portion of the samples (see e.g. Cai and
Jeng (2011)):

H0 : X1, . . . ,Xn
iid∼ N(0, 1), vs

H1,n : Xi
iid∼ (1− εn)N(0, 1) + εnN(µn, σ2), 1 ≤ i ≤ n.

Parametrization: linking sparsity and weakness to n.

µn =
√

2r log n, εn = n−β, 0 < r , β < 1.

β is the sparsity index, usually β ∈ (1/2, 1) and µn is the signal strength
growing with the sample size, i.e µn → ∞ for n→ ∞.

Tatjana Pavlenko Large-scale statistical inference



Motivating examples

Example 4: Beyond normality.

I Detection of general sparse mixture.

H0 : X1, . . . ,Xn
iid∼ Qn, vs

H1,n : Xi
iid∼ (1− εn)Qn + εnGn, 1 ≤ i ≤ n,

where Gn models the statistical variation of non-null effects.

I Set-based analyses: Detection of significant sets of highly associated variables
(gene-sets, functional genomic segments, SNPs aggregated by similar biological
functions or genetic factors in GWAS that are sparsely distributed across the
genome). See e.g Pavlenko et al (2012), Wu et al (2014), Meinshausen (2015),
Bühlmann et al. (2015) and Sun et al. (2017).

I Connection to group-wise feature selection in high-dimensional classification. See
Li et al (2015), Moscovich-Eiger et al. (2017), Pavlenko, Stepanova (2018)
(ongoing project).

H0 : S2
i

iid∼ χ2(·, 0), 1 ≤ i ≤ b, vs

H1,b : S2
i

iid∼ (1− εb)χ
2(·, 0) + εbχ2(·, ω2

i ), 1 ≤ i ≤ b.

In general, we focus on the multiple testing problem where there are many
independent null hypothesis H0i , i = 1, . . . , n, and we are interested in rejecting the
joint null ∩ni=1H0i .
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Three questions

in increasing level of difficulty:

Q1: Can we tell if at least one null hypothesis is false? (Is there any signals?)

Q2: What is the proportion of non-null hypotheses? (The theory of estimating
εn)

Q3: Which null hypotheses are false? (Where is the signal?)

The main objectives of studying the sparse detection problem are two-fold:

I To determine the detection boundary, which gives the smallest possible
signal strength r∗ = r∗(β) as a function of the sparsity parameter β, such
that reliable detection is possible, in the sense that sum of Type-I and II
error probabilities → 0 as n→ ∞. The set {(r , β) : r > ρ(β)} is known as
the detectable region.

I To construct optimally adaptive testing procedures which achieve
vanishing probability of error simultaneously for all values of (r , β) inside
the detectable region, i.e. without requiring the knowledge of sparsity
level and size of the non-null effects.
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Fundamental limits and characterization

Q: Where the departures from H0 can be detected reliably?

I The best possible theoretical detection boundary associated with the testing
problem of Example 2 (Ingster (1997)) is

ρ(β) =

{
β− 1/2, 1/2 < β ≤ 3/4,
(1−

√
1− β)2, 3/4 < β < 1.

Results are shown using Neyman-Pearson LRT with precisely specified set of
parameters εn = n−β and µn =

√
2r log n calibrated with a pair (r , β): 0 < r < 1

and β ∈ (1/2, 1).

I When (r , β) satisfy r > ρ(β) the LRT has asymptotically full power of detection

PH1,n {RejectH0} → 1 as n→ ∞.

I In the detectable region H0 and H1,n separate asymptotically. In the interior of
undetectable region H0 and H1,n merge asymptotically.

I To construct adaptive optimal procedures, Ingster (2001) and (2002) considered
generalized LRT tests over a growing discretized set of (r , β)-pairs and
established its optimal asymptotic adaptivity.

I Region of undetectability explains many failures of reproducibility.
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Separating boundary on r − β plane: existing of phases
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A new family of test statistics: initial results

I X1,X2, . . . iid with a continuous CDF F on R,
Fn(t) = n−1 ∑n

i=1 I(Xi ≤ t), t ∈ R, is the EDF based on X1, . . . ,Xn.

We are interested in testing the hypothesis of goodness-of-fit

H0 : F = F0 vs either H1 : F 6= F0 or H ′1 : F > F0.

I For specific types of alternatives, certain classical goodness-of-fit tests,
including the Kolmogorov-Smirnov and Anderson-Darling tests, may
benefit significantly from using proper weights, such as
Erdős-Feller-Kolmogorov-Petrovski (EFKP) upper-class function of a
Brownian bridge.
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The family of EFKP upper-class functions

Def: Let q be any strictly positive function on (0, 1) with the property
q(u) = q(1− u) for u ∈ (0, 1/2), which is nondecreasing in a neighborhood of zero
and nonincreasing in a neighborhood of one. Such a function is called an
Erdős-Feller-Kolmogorov-Petrovski (EFKP) upper-class function of a Brownian bridge
{B(u), 0 ≤ u ≤ 1}, if there exists a constant 0 ≤ b < ∞ such that

lim sup
u→0

|B(u)|/q(u) a.s.
= b.

Def: An EFKP upper-class function q of a Brownian bridge is called a
Chibisov-O’Reilly function if b = 0 in (Csörgő et al (1986)). Example of EFKP

upper-class function with 0 < b < ∞

q(u) =
√

u(1− u) log log(1/(u(1− u))).

Example of Chibisov-O’Reilly function

q(u) = (u(1− u))1/2−ν, 0 < ν < 1/2.
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A new family of test statistics

Back to testing H0 : F = F0 vs H1 : F 6= F0 or H
′
1 : F > F0

Tn(q) = sup
0<F0(t)<1

√
n|Fn(t)− F0(t)|

q(F0(t))
, T+

n (q) = sup
0<F0(t)<1

√
n (Fn(t)− F0(t))

q(F0(t))
,

q belongs to the family of the EFKP upper-class functions of {B(u), 0 ≤ u ≤ 1}.

As Tn(q), in this generality, appeared for the first time in the paper of M. Csörgő, S.

Csörgő, Horváth, and Mason (1986), the statistics Tn(q) and T+
n (q) will be called the

two-sided and one-sided Csörgő-Csörgő-Horváth-Mason (CsCsHM) statistics,

respectively.

Under H0, by defining Ui = F0(Xi ) for each n,

Tn(q)
D
= sup

0<u<1

√
n|Un(u)− u|

q(u)
, T+

n (q)
D
= sup

0<u<1

√
n(Un(u)− u)

q(u)
,

Un(u) = n−1 ∑n
i=1 I(Ui ≤ u) with U1, . . . ,Un being iid U(0, 1) r.v. The corresponding

order statistics are denoted by U(1) < . . . < U(n).
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Asymptotic theory

The utility of the test depends on whether one can work out the distribution
theory of the test statistic.

Fact 1 (Theorem 4.2.3 in Csörgő et. al (1986): The sequence of r. v.’s
sup0<u<1

√
n|Un(u)− u|/q(u) converges in distribution to a nondegenerate random

variable if and only if q is an EFKP upper-class function. The latter nondegenerate
random variable must be the random variable sup0<u<1 |B(u)|/q(u).

Fact 2 (Lemma 4.2.2 in Csörgő et. al (1986): Whenever q is an EFKP upper-class
function, then for each −∞ < x < ∞ and any Brownian bridge B

P

(
sup

1/n≤u≤1−1/n
|B(u)|/q(u) ≤ x

)
→ P

(
sup

0<u<1
|B(u)|/q(u) ≤ x

)
, n→ ∞.

By Facts 1 and 2, if H0 is true, then as n→ ∞

Tn(q) = sup
0<F0(t)<1

√
n|Fn(t)− F0(t)|

q(F0(t))
D→ sup

0<u<1
|B(u)|/q(u),

T+
n (q) = sup

0<F0(t)<1

√
n(Fn(t)− F0(t))

q(F0(t))
D→ sup

0<u<1
B(u)/q(u).
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Test procedure based on CsCsHM: advantages

In general, for I = (a, b), 0 ≤ a < b ≤ 1 and q an EFKP upper-class function, the
statistics

Tn(q, I ) = sup
a<F0(t)<b

√
n|Fn(t)− F0(t)|

q(F0(t))
, T+

n (q, I ) = sup
a<F0(t)<b

√
n(Fn(t)− F0(t))

q(F0(t))

have the same null distributions as the respective uniform empirical processes in
weighted sup-norms:

sup
u∈I
|Un(u)− u|/q(u), sup

u∈I
(Un(u)− u)/q(u).

The convergence results suggest the following test procedures of asymptotic level α:

I Set Tn(q) := sup0<u<1 |B(u)|/q(u), T+
n (q) := sup0<u<1 B(u)/q(u).

I Reject H0 in favor of H1 when Tn(q) > tα(q), the critical point tα(q) is chosen
to have P(T (q) ≥ tα(q)) = α; and reject H0 in favour of H ′1 whenever
T+
n (q) > t+α (q), where t+α (q) is determined by P(T+(q) ≥ t+α (q)) = α.

I An effective algorithm for tabulating the CDFs of Tn(q) and T+(q) is given in
Stepanova, Pavlenko (2018).
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Motivation for the use of Tn(q, I ) and T+
n (q, I )

Tukey’s higher criticism test statistics (using probability integral transform for each n,
see Donoho, Jin (2004), see e.g. Jager and Wellner (2007), Cai et al (2014))

HCn = sup
0<u<α0

√
n(Un(u)− u)√

u(1− u)
, 0 < α0 < 1.

Construction: The test statistic HC+
n is derived from the random variable

max
0<α≤α0

√
n (Mn/n− α)√

α(1− α)
,

where Mn is the number of hypotheses among H0i , i = 1, . . . , n, that are rejected at

level α, which measures the maximum deviation of the observed proportion of

rejections from what one would expect it to be purely by chance as the Type I error

level changes from zero to α0 (see DasGupta (2008)). The parameter α0 defines a

range of significance levels in multiple-comparison testing and therefore is a number

like 0.1 or 0.2.

The convergence properties of the statistic HCn are largely determined by the

behaviour of
√
n(Un(u)− u)/

√
u(1− u) in the vicinity of zero and one: the latter

inflates when u is close to zero and one.
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Motivation for the use of Tn(q, I ) and T+
n (q, I ) (cont.)

To overcome this problem, Donoho and Jin (2004), (2008) suggested to truncate the
range

HC+
n = sup

U(1)<u<U([α0n])

√
n(Un(u)− u)√

u(1− u)
, 0 < α0 < 1

which does not eliminate the problem!

In the sup-norm scenario, when the process
√
n(Un(u)− u) is normalized by√

u(1− u), all the action takes place in the tails but, unfortunately, near infinity.

This, together with the fact that, under H0, the statistic HCn tends to ∞ in

probability, as well as almost surely (see Ch. 16 in Shorack Wellner (1986)),

motivated us to search for a better weighed analog of the statistic HC+
n , for which the

action is shifted somewhat to the middle, while properly regulated on the tails, and

whose limit distribution is sensitive to α0.

We propose CsCsHM (the weighted KS test statistic) T+
n (q, I ) with I = (0, α0) and

q(u) =
√

u(1− u) log log(1/(u(1− u))) as a competitor HC+
n . Unlike the test

procedures based on HC+
n and its modifications with the suprema over (1/n, α0) and

(U(1),U([α0n])
), in order to perform well, the test procedure based on T+

n (q, I ) do not

require a very large sample size ofn = 106 and works well for n = 102, see Stepanova

Pavlenko (2018).
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Convergence properties of CsCsHM
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Figur: Confidence bands for simulated data. The solid line is the true CDF. The solid
lines above and below the middle line are a 95% CsCsHM confidence band. The red
dashed lines are a 95% Kolmogorov-Smirnov confidence band.
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CsCsHM for optimal detection of sparse heterogeneous mixtures

I Detection of sparse mixtures is a special case of a goodness-of-fit testing
problem. Extensive studies after publications of Ingster(1997, 1999), (see
also Donoho, Jin (2009), Cai et. al (2011) and Cai et al (2014)).

I We focus on (back to Example 2)

H0 : X1, . . . ,Xn
iid∼N(0, 1),

i.e., F0 in the goodness-of-fit testing is the standard normal CDF, vs

H1,n : X1, . . . ,Xn
iid∼ (1− εn)N(0, 1) + εnN(µn, 1),

where εn = n−β for some unknown β ∈ (1/2, 1) and µn =
√

2r log n with
0 < r < 1.

I The choice of the non-zero µn makes the problem very hard but yet
solvable! If ξ1, ξ2, . . . are iid standard normal r.v.’s, then

P

(
max

1≤i≤n
|ξi | ≥

√
2 log n

)
→ 0, n→ ∞.
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Attainment of the optimal detection boundary

To apply the previously developed theory to the problem of testing H0 vs H1,n,
we need to transform Xi ’s to Yi = 1−Φ(Xi ). Let G(u) denote a common
CDF of the Yi ’s taking values in [0, 1]. Then the problem of testing H0 versus
H1,n transforms to testing

H0 : G(u) = F0(u), the uniform U(0, 1) CDF

against a sequence of upper-tailed alternatives

H1,n : G(u) = F0(u) + εn
(
(1− u)−Φ

(
Φ−1(1− u)− µn

))
> F0(u).

The test statistic takes the form

T+
n (q) = sup

0<u<1

√
n(Gn(u)− u)

q(u)
,

where Gn(u) = n−1 ∑n
i=1 I(Yi ≤ u) is the EDF based on the transforms

variables Yi ’s.
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Attainment of the optimal detection boundary (cont.)

Thm (see S., P. (2018)) For (r , β) satisfying r > ρ(β), the test based on T+
n (q)

is size and power consistent for testing H0 vs H1,n. For an EFKP upper
class function q(·), consider the test of asymptotic level α that rejects H0

when T+
n (q) > t+α (q). Then, for every alternative H1,n, with r exceeding

ρ(β), the asymptotic level α test based on T+
n (q) has a full power,

PH1,n
(T+

n (q) > t+α (q))→ 1 as n→ ∞.

If r > ρ(β), then asymptotically the test procedure based on T+
n (q)

distinguishes between H0 and H1,n

Opt. Everywhere in (r , β) plane - where LRT is successful – the CsCsHM
testing with T+

n (q) also completely separates H0 and H1,n.

Since T+
n (q) does not require the knowledge of β and r we call such a

test procedure optimally adaptive.
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Optimal adaptivity of T+
n (q): the non-asymptotic context

Figur: Simulated CsCsHM values. Histograms for T+
n (q) under H0 and under the

alternative H1,n obtained by n = 104. Left: parametrization, β = 0.55, r = 0.9 (region
of success). Right: parametrization, β = 0.9, r = 0.3 (region of failure). See more on
non-asymptotic results in Stattin (2017).
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Applications: CsCsHM detection threshold in classification

LDA: a quick tour

I Supervised setting: given is n labeled training samples {(Xi , Ci )}ni=1,
I Xi ∼ N(Ciµ, Σ) are i.i.d. feature vectors in Rp

I Ci ∈ {−1,+1} are class variables

I Goal: given a fresh feature vector X, predict the associated class variable C.

I Fisher linear discriminant: L(X) = ∑p
j=1 ωjxj

I Feature weights ω ∝ Σ−1µ are estimated using {(Xi , Ci )}ni=1

I Decision rule: Allocate x to C ± 1 according to L(x) ≷ 0

I Widely used in a huge amount of empirical statistical research

I Optimal weights are asymptotically approachable with n� p
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New data types and modern challenges

Examples: Tumor classification by gene expression data
Data name Source n, total sample size p, features

Colon Alon et al. (99) 62 (n1 = 22, n2 = 40) p = 2000
Prostate Singh et al.(02) 102 (n1 = 50, n2 = 52) p = 12600
Breast Pawitan et al. (05) 159 (n1 = 128, n2 = 31) p = 6573

I Problem: Too few observations to estimate Σ−1 if p � n.

Solution: Regularization of Σ, graph-based technique to learn the
structure underlying Σ−1 (concentration matrix, Ω = Σ−1).

I Problem: Many features, most useless, a few useful. Sparse model, rare
and weak model.

Solution: DLDA (for today diag(Σ−1)) & Feature selection with
CsCsHM-thresholding.

Our strategy: ”Use a method that does well in sparse problems, since no
procedure does well in dense problems”, Friedman et al. (2004).
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Feature selection by thresholding

1: Obtain a vector z quantifying the feature separation strength, z-scores,
within a given classification problem: z = 1√

n ∑n
i=1 Cixi

2: Define the jth feature weight as hard threshold function

ωj (ψ) = sing(zj )1|zj |>ψ

3: LDA with feature thresholding:

L∗(x; ψ) =
p

∑
j=1

ωj (ψ)xj ≷ 0

Crucial question: How to determine the best threshold ψ?
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CsCsHM detection threshold

zj : z-score as the test statistics for testing the null hypothesis

H0,j : jth feature variable is not informative

1. Transform z-scores to p-values: πj = P(|N(0, 1)| > |zj |)
2. Arrange: π(1) < π(2) < · · · < π(p)

3. Define the CsCsHM objective function

T+
p,q(j ; π(j)) =

√
p(j/p − π(j))

q(j/p)

4. Fix α0 ∈ [0, 1/2). Obtain the maximizing index of T+
p,q(j ; π(j)):

j∗ = arg max
1≤j≤[α0p]

T+
p,q(j ; π(j))

5. Set the CsCsHM threshold as (new ingredient):

ψ∗ = |z |(j∗) corresonding to maximizing, j∗
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Illustration of CsCsHM thresholding

Figur: Parametrization: p = 103, β = 0.6, r = 0.7, α = 0.5 (only fragment to α0 = 0.1
is shown). The component score maximizing the objective function T+

p,q(j ; π(j))
located at the red line.
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Phase space for classification problem

Figur: Left: Classification boundaries and optimality for ARW models. Calibration
using p as a driving index:

εp = p−β, µ =
√

2r log p, np = pθ , θ ∈ (0, 1)

ρθ(β) = (1− θ)ρ(β/(1− θ)), 0 < β < (1− θ).

Right: Phase diagram (regular growth: np = pθ), 0 < β < 1 and 0 < r < 4. In the dark
green region, it is not only possible to construct successful classifiers, but is also
possible to separate useful features from useless ones. Feature variables assumed to be
independent (Naive approach).
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Phase transition in non-asymptotic context

Figur: Empirical behavior of finite sample size of T+
p,q(j ; π(j)) thresholding with

α0 = 0.1. Heat map of Êrr with θ = 0.4, p = 103 (left) and θ = 0.2 p = 104 (right),
showing the transition zone near the detection boundary. The grid is set to
(100× 100). The simulations are performed on resources provided by the Swedish
National Infrastructure for Computing (SNIC) at Tegner PDC.
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Analysis of classification accuracy of CsCsHM-thresholding

Tabell: Mean misclassification rates and mean number of variables selected with std
for the Leukemia data set, with data size of (73× 7129)

Method Misclassification rate N. variables selected
HC+ 0.024 (±0.00771) 151.4 (±4.35)
T+
p,q 0.026 (±0.00284) 68.4 (±3.09)

Tabell: Mean misclassification rates and mean number of variables selected with
standard deviation for the Colon caner data set, with a size of (62× 2000)

Method Misclassification rate N. variables selected
HC+ 0.1058 (±0.01024) 87.6 (±12.30)
T+
p,q 0.1075 (±0.01176) 35.8 (±4.78)
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Conceptual advantages of CsCsHM

I is the data-driven nonparametric statistics

I performs optimally under ARW – without needing to know the underlying
ARW parameters (optimal adaptivity)

I is simple (compare e.g. with internally very complex SVM classifier) and
extremely fast, does not require tuning, cross-validation, ...

I is competitive in performance accuracy (outperforms out-of-the box
classifiers such as SVM, BagBost)

I See e.g result reported in Donoho and Jin (2008):

I Colon cancer, SVM: Êrr = 0.1505, BagBost: Êrr = 0.1610
I Leukemia, SVM: Êrr = 0.0189, BagBost: Êrr = 0.0408
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Further challenges: beyond normality

Threshold choice for optimal detection of informative sets of features
(gene-sets or pathways whose expressions jointly change significantly between
given conditions, i.e. tumor/normal).

Problems:

I Quantifying the separation strength of a subset of variables within a given
classification problem.

I Too many subsets identified at the structure learning stage, a few
informative/weak signals.

Our strategy:

I Squared Mahalanobis norm for the location shift and its distribution in
high-dimensions. Relation to misclassification probability.

I Modeling of sparse and weak data in classification setting.

I Linking the optimal choice of threshold to multiple testing procedures.
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Detection problem: Whether any sets are informative?

I Distributional properties. For p0 � p

δ̂2
j =

n1n2

n1 + n2
(µ̂1,[j ] − µ̂2,[j ])

′Ω̂[j ](µ̂1,[j ] − µ̂2,[j ]).

S2
i =

n1 + n2 − p0 − 1

(n1 + n2 − 2)p0
δ̂2
j ∈ F

(
·; p0, n1 + n2 − p0 − 1,

n1n2

n1 + n2
δ2
j

)
.

I In (n, p)-asymptotic, uniformly over j

S2
j → χ2(·; p0, γ2

j ) in distribution.

I The goal to investigate the properties of CsCsHM for testing and
thresholding

H0 : S2
j ∈ χ2(·; p0, 0),

vs p-dependent alternatives

H1,b : S2
j ∈ (1− εp)χ

2(·; p0, 0) + εpχ2(·; p0, γ2),
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Current work

I When the separation strength may be unequal
Our strategy: Replace the single χ2 distribution by a mixture of non-central
χ2s so that the alternative hypothesis becomes

H1,b : S2
i are iid from (1− βp)χ

2(·, 0) + β
∫

χ2(·, γ2)dGn(γ
2)

where χ2(·, u) is the density of χ2(·, γ2) and Gn(γ2) is some distribution
function of the separation strength.

I How to (efficiently) estimate proportion of informative blocks, β in
SWBM?

I Exact classification boundary separating detectable and undetectable
regions for χ2 family.

I Relationship between ideal block-thresholding, CsCsHM-thresholding and
misclassification probability.
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