Turán numbers for a 4-uniform hypergraph

Karen Gunderson University of Manitoba
Based on joint work with Jason Semeraro (University of Leicester)

3 September 2020
Inference problems: algorithms and lower bounds
Frankfurt

Turán numbers

For n, r and an r-uniform hypergraph \mathcal{H}, the Turán number is

$$
\begin{aligned}
\operatorname{ex}(n, \mathcal{H})= & \text { max. number of hyperedges in } r \text {-unif., } \\
& \mathcal{H} \text {-free hypergraph on } n \text { vertices. }
\end{aligned}
$$

Turán density for \mathcal{H} :

$$
\pi(\mathcal{H})=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, \mathcal{H})}{\binom{n}{r}}
$$

- (Case $r=2$) Erdős-Stone-Simonovits: $\pi(H)=1-\frac{1}{\chi(H)-1}$
- Exact Turán numbers known for many classes of graphs
- Much less known for hypergraphs

Turán density for K_{4}^{-}

$K_{4}^{-}=3$-uniform hypergraph on 4 vertices with 3 edges

$$
0.2857 \approx \frac{2}{7} \leq \pi\left(K_{4}^{-}\right) \leq 0.2871
$$

- Upper bound: Baber and Talbot (2011) using flag algebra techniques
- Lower bound: Frankl and Füredi (1984) construction based on a fixed hypergraph with 6 vertices and 10 hyperedges

4 -sets have 0 or 2 hyperedges

Frankl and Füredi (1984):
Characterized all 3-uniform hypergraphs with the ppty that any 4 vertices contains either 0 or 2 hyperedges as one of two classes of hypergraphs.

Example 1: Place n vertices around a circle, no two on a line through the center. Hyperedges $=$ sets of three vertices whose convex hull contains the center; $\leq \frac{1}{4}\binom{n+1}{3}$ edges.

$\begin{array}{lll}125 & 236 & 347\end{array}$
$135 \quad 246 \quad 357$
136247
$\begin{array}{lll}145 & 256 & 367\end{array}$
146257
147

4 -sets have 0 or 2 hyperedges

Frankl and Füredi (1984):
Characterized all 3-uniform hypergraphs with the ppty that any 4 vertices contains either 0 or 2 hyperedges as one of two classes of hypergraphs.

Example 1: Place n vertices around a circle, no two on a line through the center. Hyperedges $=$ sets of three vertices whose convex hull contains the center; $\leq \frac{1}{4}\binom{n+1}{3}$ edges.

$\begin{array}{lll}125 & 236 & 347\end{array}$
$135 \quad 246 \quad 357$
136247
$\begin{array}{lll}145 & 256 & 367\end{array}$
146257
147

Example 2: Blow-up of the following 3-hypergraph with 6 vertices and 10 edges gives $\sim 10\left(\frac{n}{6}\right)^{3} \approx \frac{5}{18}\binom{n}{3}$ edges with n vertices.

Vertices $=\{0,1,2,3,4,5\}$ Edges:

One construction:
Hyperedge $=3$ vertices that contain one edge.

015	013
125	124
235	230
345	341
045	402

Example 2: Blow-up of the following 3-hypergraph with 6 vertices and 10 edges gives $\sim 10\left(\frac{n}{6}\right)^{3} \approx \frac{5}{18}\binom{n}{3}$ edges with n vertices.

Vertices $=\{0,1,2,3,4,5\}$ Edges:

One construction:
Hyperedge $=3$ vertices that contain one edge.

015	013
125	124
235	230
345	341
045	402

Two-graphs

Example 2 and the graph construction are an example of a two-graph (introduced by Higman):

Def: A two-graph is a 3-uniform hypergraph with the property that any 4 -set contains an even number of edges.

Two-graphs

Example 2 and the graph construction are an example of a two-graph (introduced by Higman):

Def: A two-graph is a 3-uniform hypergraph with the property that any 4 -set contains an even number of edges.

Construction: For any graph, define a hypergraph whose edges are the 3 -sets that contain an odd number of edges. Result is always a two-graph.

Every two-graph arises in this way: Pick any vertex x and build a graph with all pairs $\{y, z\}$ contained in a hyperedge with x.

Graph switching

Given a graph $G=(V, E)$ and $A \subseteq V$, switching w.r.t A : interchange edges and non-edges between A and A^{c}.

switch wrt $A=\{1\} \rightarrow$

Graphs G, H give the same two-graph iff one can be obtained from the other via switching.

Other sizes of hyperedges?

Question (Frankl, Füredi):
What is max. value of $e(\mathcal{H})$ among all r-uniform hypergraphs on n vertices with the ppty that every $r+1$ vertices span either 0 or 2 edges?

Construction:

- Vertices $=n$ points on the surface of a sphere in \mathbb{R}^{r-1}.
- Edges $=r$-sets whose convex hull contains the centre of the sphere.
Choosing position of vertices at random gives $\frac{(1+o(1))}{2^{r-1}}\binom{n}{r}$ edges.

Related problems

Bollobás, Leader, Malvenuto (2011): r-uniform (s, t)-Daisy

$$
\mathcal{D}_{r}(s, t):
$$

A hypergraph is $\mathcal{D}_{r}(3,2)$-free iff every $(r+1)$-set has at most 2 edges.

Reiher, Rödl, Schacht (2017): Determine Turán density with additional 'uniform density' condition for r-uniform hypergraph on $r+1$ vertices with 3 edges.

Case for 4-uniform hypergraphs

Question (Frankl, Füredi $r=4$):
What is max. value of $e(\mathcal{H})$ among all 4-uniform hypergraphs on n vertices with the ppty that every 5 vertices span either 0 or 2 edges?

Sphere construction gives such a hypergraph with

$$
\frac{(1+o(1))}{8}\binom{n}{4}
$$

edges.

Infinitely many answers for $r=4$

Theorem (G., Semeraro)

For each prime power $q \equiv 3(\bmod 4)$, there exists a 4-uniform hypergraph, \mathcal{H}_{q}, on $q+1$ vertices with the following properties:

- any 5 -set spans 0 or 2 edges,
- $e\left(\mathcal{H}_{q}\right)=\frac{q+1}{16}\binom{q+1}{3}$, and
- every 3 -set is contained in exactly $\frac{q+1}{4}$ edges.

Theorem (G., Semeraro)

For any prime power $q \equiv 3(\bmod 4)$,

$$
\operatorname{ex}(q+1,\{1234,1235,1245\})=\frac{(q+1)}{16}\binom{q+1}{3}
$$

Upper bound

Lemma

If \mathcal{H} is an r-uniform hypergraph on n vertices with the ppty that every $(r+1)$-set contains at most 2 hyperedges, then

$$
e(\mathcal{H})=|E(\mathcal{H})| \leq \frac{n}{r^{2}}\binom{n}{r-1} .
$$

Proof sketch.
(Based on de Caen's 1983 bound for hypergraph Turán numbers.) Double-count pairs (A, B) with

- $|A|=|B|=r$,
- $|A \cap B|=r-1$, and
- $A \in \mathcal{H}, B \notin \mathcal{H}$.

Pf continued

$*=\mid\{(A, B):|A|=|B|=r,|A \cap B|=r-1, A \in \mathcal{H}$ and $B \notin \mathcal{H}\} \mid$
Lower bound:
For every edge E and $x \notin E, E \cup\{x\}$ contains ≤ 1 other edge.

There are at least $r-1$ choices for $B \notin \mathcal{H}$ with $|B \cap E|=r-1$.

$$
* \geq e(\mathcal{H})(n-r)(r-1) .
$$

Upper bound:
For every $(r-1)$-set C, let $a_{C}=|\{A \in \mathcal{H}: \quad C \subseteq A\}|$.
Since every edge has r different ($r-1$)-subsets:

$$
\sum a_{C}=\operatorname{re}(\mathcal{H}) .
$$

Num. of pairs (A, B) with $A \in \mathcal{H}, B \notin \mathcal{H}$ and $A \cap B=C$ is $a_{C}\left(n-r+1-a_{C}\right)$.

$$
\begin{aligned}
* & =\sum a_{C}\left(n-r+1-a_{C}\right)=(n-r+1) r e(\mathcal{H})-\sum a_{C}^{2} \\
& \leq(n-r+1) r e(\mathcal{H})-\frac{r^{2} e(\mathcal{H})^{2}}{\binom{n}{r-1}} .
\end{aligned}
$$

Thus,

$$
e(\mathcal{H})(n-r)(r-1) \geq(n-r+1) r e(\mathcal{H})-\frac{r^{2} e(\mathcal{H})^{2}}{\binom{n}{r-1}} .
$$

Construction idea for \mathcal{H}_{q}

Start with

- Vertices $=\mathbb{F}_{q}$
- Edges: $\{a, b, c, d\}$ s.t. for every perm. $\sigma \in S_{4}$,

$$
(\sigma(a)-\sigma(b))(\sigma(b)-\sigma(c))(\sigma(c)-\sigma(d))(\sigma(d)-\sigma(a))
$$

is a quadratic non-residue in \mathbb{F}_{q}.
Every 5 -set spans 0 or 2 edges.
To count edges, let χ be the square character on \mathbb{F}_{q} and use identities:

$$
\sum_{x \in \mathbb{F}_{q}} \chi(x)=0
$$

For every $y \neq 0$,

$$
\sum_{x \in \mathbb{F}_{q}} \chi(x) \chi(x+y)=-1
$$

Total number of edges $=$

$$
\frac{q-3}{16}\binom{q+1}{3}<\frac{q}{16}\binom{q}{3} .
$$

Total number of edges $=$

$$
\frac{q-3}{16}\binom{q+1}{3}<\frac{q}{16}\binom{q}{3} .
$$

Extend to $\mathbb{P}^{1} \mathbb{F}_{q}$ with $\frac{1}{4}\binom{q+1}{3}$ edges containing the point at infinity to get the full hypergraph.

To be precise, replace $\chi(a-b)$ with $\chi\left(\left|\begin{array}{ll}a & b \\ 1 & 1\end{array}\right|\right)$ and extend same construction with homogeneous coordinates.

Turán density

Theorem (Baber)
 $\pi(\{1234,1235,1245\})=\frac{1}{4}$.

Proof.
For any tournament on n vertices, choose 4 -sets that induce tournaments isomorphic to either of the following:

Choosing the tournament at random gives at least $\frac{1}{4}\binom{n}{4}$ hyperedges.

Connection to \mathcal{H}_{q}

Let $T(q)$ be the Paley tournament on \mathbb{F}_{q} :

- Vertices $=\mathbb{F}_{q}$
- Arcs $=a \rightarrow b$ iff $b-a$ is a quadratic residue.

Extend to $T^{*}(q)$: add a vertex 'at infinity' with all edges directed towards it.

Applying Baber's construction to $T^{*}(q)$ gives the hypergraph \mathcal{H}_{q} !

When $n \not \equiv 0(\bmod 4)$

Belkouche, Boussaïri, Lakhlifi, Zaidi (2020):
If n is odd and \mathcal{H} is a 4-uniform hypergraph on n vertices with the ppty that any 5 vertices contains either 0 or 2 hyperedges, then

$$
e(\mathcal{H}) \leq \frac{(n+1)(n-3)}{16(n-2)}\binom{n}{3} .
$$

Using Baber's construction from tournaments, they show that the existence of certain skew-conference matrices would imply that the upper bounds are achieved.

Tournament switching

Definition

Tournaments T_{1} and T_{2} on the same vertex set V are switching equivalent iff $\exists A \subseteq V$ so that T_{2} can be obtained from T_{1} by reversing the orientation of all edges between A and $V \backslash A$.

The two tournaments:

switch wrt $\{d\} \rightarrow$

are a switching equivalence class.

For any tournament T, let \mathcal{H}_{T} be the associated hypergraph given by Baber's construction.

Lemma

If tournaments T and T^{\prime} are switching equivalent, then $\mathcal{H}_{T}=\mathcal{H}_{T^{\prime}}$.

The converse fails: The following two tournaments are not switching equivalent, but both yield the same hypergraph $\{1234,2345\}$.

6-uniform hypergraphs

The switching equivalence classes of the following tournament:

and constructions using $T^{*}(q)$ show that

$$
\frac{9}{64} \leq \pi(\{123456,123457,123467\}) \leq \frac{1}{6}
$$

and

$$
\operatorname{ex}(12,\{123456,123457,123467\})=264 .
$$

Not all extremal examples from tournaments

There are extremal examples that do not arise from tournaments. Hughes (1965) gave a $3-(12,4,3)$ design, \mathcal{M}, associated with the Mathieu group M_{11}.

Theorem (G, Semeraro)

The hypergraph \mathcal{M} as the properties

- any 5 -set spans 0 or 2 edges,
- $e(\mathcal{M})=165=\frac{12}{16}\binom{12}{3}$, and
- there is no tournament T with $\mathcal{H}_{T} \cong \mathcal{M}$.

Question: Classification of 4-hypergraphs with ppty that every 5 vertices span 0 or 2 edges?

Thank you!

