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Introduction



Overview

I For disordered systems with concave Hamiltonians

I we prove the concentration of multioverlaps,

I a representation of the asymptotic distribution of the spins,

I and asymptotic strong Gibbs decorrelation of spins.

(!) −→ this symbol marks important points during the talk



Setting and notations

Bounded spin Gibbs measure

Let J be real valued r.v.s and σ ∈ [−1; 1]N random vector with
density

GN (σ|J) :=
1

ZN (J)
eHN (σ|J),

where a.s. HN ∈ C2(ΣN ) is concave w.r.t. σ and ZN (J)
normalisation.

Define the log partition function as

fN := EFN := E logZN (J).

We make the usual assumption that VarFN/N
N→+∞−−−−−→ 0.



Setting and notations

Replicas := independent samples from Gibbs measure with
same disorder J .

σli := i-th spin of l-th replica.

K := set of sets of finite integers.

Definition

For k := (k1, . . . , kn) ∈ K, the associated multioverlap (m.o.) is

R(k) := N−1
N∑
i=1

(σ1
i )
k1 · · · (σni )kn .

I n = 1 and k = 1: magnetisation.

I n = 2 and k = (1, 1): overlap.



High dimensional inference

x0 ∈ ΣN parameters to estimate and y(x0) ∈ (Σ′)M

observations. We have

P (x|y) =
1

Z
P (x)P (y|x).

High dimension: we consider N,M → +∞, N/M = Θ(1).

The Hamiltonian is

H(x|y) := log(P (x)P (y|x)).

(!) Objective: estimate log partition logZ or mutual
information I(x0;y). Both are related by a constant.



Empirical risk minimisation

L : ΣN × Σ′M → R≥0 is a loss. Define the estimator

x := argminx′∈ΣN
L(x′,y).

Let β > 0 be an inverse temperature and

P (x|y) =
1

Z
e−βL(x,y).

Then H(x|y) := −L(x,y). x is recovered at zero temperature.

(!) The estimator can be studied through logZ.



Problems of interest

Regularised least squares linear regression:

x := argminx′∈ΣN

∣∣∣∣Ax′ − y
∣∣∣∣2

2
+ f(x′),

with A→ known matrix / f → convex function.

The associated Hamiltonian

H(x|y) := − ||Ax− y||22 − f(x)

is then concave.

(!) This includes ridge (f = ||·||1) and LASSO (f = ||·||22).



Problems of interest

Generalised linear models:

y = φ(Ax0) + z,

with φ(·) some function and z a normal vector of covariance ∆I.

If assumed model is linear model (mismatch)

H(x|y) := − logP0(x)−∆−1 ||Ax− y||22 ,

where P0 → assumed prior. If logP0(·) is convex, H is concave.

(!) Here there are no Bayes-optimal identities.



Prior work

[1] connection between Bayes-optimal inference and
M-estimators.

[2] many sparse inference problems.

[3] informational theoretical limit of a binary sparse model.

(!) The proof requires multioverlap concentration.
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Prior work

[7] and [8] regularised least squares for general feature matrices
more general than Gaussian.

[9] m.o. concentration for Bayes-optimal inference.

(!) Many approaches based on Gordon min-max, interpolation
and cavity methods.
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Main results



Perturbed model

(!) Perturbations give “good properties” that
ensure concentrations.

Gaussian perturbation

We add a ridge regularisation term

Hgauss
N (σ) := −εN

2
||σ||2 ,

with εN → 0 and NεN → +∞.

(!) This forces m.o. to concentrate w.r.t. Gibbs measure.



Perturbed model

For I ∈ I, consider polynomials PI : [−1; 1]→ [0; 1] s.t.

PI(x) :=

m−1∑
p=0

ap(x+ 1)p.

The PI are convex on [−1; 1].

The definition of I makes
∑

I∈I PI uniformly summable and
the coefficients accumulate at 0.

Also, PI(x) ∈ [0, 1].



Perturbed model

π := (πI)I∈I i.i.d. Poisson of mean sN .

U := (U Ij )j∈[N ],I∈I i.i.d. uniform in [N ].

λ := (λI)I∈I i.i.d. uniform in [1/2; 1].

sN s.t. sN → +∞ and sN
N → 0.

Poisson perturbation

Add a second perturbation defined by

Hpoiss
N (σ|π, U, λ) := −

∑
I∈I

λI

πI∑
j=1

PI(σUI
j
).

(!) Hpoiss
N is a.s. concave w.r.t. σ.

(!) Poisson perturbation forces full m.o. concentration.



Hypothesis

We assume the following hypothesis:

I [H1] : a.s. HN (σ|J) ∈ C2(ΣN ) and concave w.r.t. σ,

I [H2] : HN (σ1, . . . , σN |J)
d
= HN (σP (1), . . . , σP (N)|J).

E(·) := expectation w.r.t. J .

Eλ(·) := expectation w.r.t. λ.



Main results

Proposition (Gibbs m.o. concentration)

Assume [H1]. For all k,

EλE
〈(

R(k) −
〈
R(k)

〉)2
〉
≤
∑n

i=1 k
2
i

NεN

Theorem (m.o. concentration)

Assume [H1]− [H2]. For all k,

lim
N→+∞

EλE
〈(

R(k) − E
〈
R(k)

〉)2
〉

= 0 .



Important consequences

Corollary (Asymptotic spin distribution)

Under [H1]− [H2], for every (Nj)j≥1 s.t. ∀i, l ≥ 1, σli converge
in dist., there exists a probability measure ν ∈ B([−1; 1]) and
(for i ≥ 1) µi ∼ ν i.i.d., so that (σli)l≥1 converge jointly in dist.
to samples from µi(·).

Corollary (Strong asymptotic spin independence)

Under [H1]− [H2], for all distinct i1, . . . , ik, and h1, . . . , hk
continuous functions,

E(〈h1(σi1) · · · hk(σik)〉 − 〈h1(σi1)〉 · · · 〈hk(σik)〉)2 N→+∞−−−−−→ 0

In [10], a softer decorrelation is derived from overlap
concentration.

[10] Talagrand. (2010). Mean field models for spin glasses: Vol. I.



Discussion of the results

These results are a step forward in two directions:

(!) Extending adaptive interpolation methods to the non
Bayes-optimal regime of inference and ML setting/ERM.

(!) Studying the relationship between the approaches based on
interpolation and Gordon’s min-max theorem.



Strategy of the proofs



Technical background: log-concave densities

Definition

Log-concave density f(·) if f = eφ, for some φ : RN → R
concave.

Brascamp-Lieb’s variance inequality implies the following
corollary.

Corollary

If Hessian of φ upper bounded by −εI (ε > 0), then for f ∈ C1

Var f(X) ≤ 1

ε
E ||∇f(X)||2 .



Technical background: Aldous-Hoover representation

Theorem (Aldous-Hoover)

(Xij)i,j≥1 invariant by permutations iff Xij
d
= f(u, vi, wj , xij);

where f : [0; 1]4 → R and u, vi, wj , xij i.i.d. Unif[0; 1].

By tightness and this, there is σ : [0; 1]4 → [0; 1]→ s.t.,

σli
d−→ σ(u, vi, wl, xil),

along some subsequence and with (u, vi, wl, xil) as above.

(!) These variables parametrise correlations.



Technical background: Aldous-Hoover representation

Meaning of uniform variables in A-H representation:

I u→ only depends on disorder, correlates every spin of
every replica.

I vi → correlates same spin in different replicas.

I wl → correlates all the spins of the same replica.

I xil → randomness particular of every single spin.

Obs: Gibbs mean 〈 · 〉 goes to
∫ 1

0 · · ·
∫ 1

0 ( · )dw dx.



Technical background: limits of m.o.’s

Lemma

In this limit, we have that for every n ≥ 1 and k ∈ Kn,

R(k) d−→ R(k)
∞ (u,w1, . . . , wn) :=

∫ 1

0

∏
l≤n

σ̄(kl)(u, v, wl) dv,

with σ̄(kl)(u, v, wl) :=
∫ 1

0 σ
kl(u, v, wl, x)dx.

By Gibbs concentration of m.o.’s (Main Results) we get:

Corollary

Let k ≥ 1. We have that a.s. σ̄(k)(u, v, w) = σ̄(k)(u, v).



Strategy of the proofs

Lemma (Energy concentration)

Assume [H1]− [H2]. Let EI(σ) :=
∑πI

j=0 PI(σUI
j
). For I ∈ I,

EλE
〈∣∣EI(σ)− E 〈EI(σ)〉

∣∣〉 ≤ (5v
1/4
N +

√
2)s

1/2
N ,

We get Franz-de Sanctis [11] type ineq (kind of spin glass’
Ghirlanda-Guerra ids.). Define θlI,j := PI(σ

l
i).

Theorem

Given [H1]− [H2], for all n ≥ 1, I ∈ I, and fn : Σn
N → [−1; 1]

Eλ

∣∣∣∣∣∣E
〈
fnθI,1e

−λI
∑n

l=1 θ
l
I,1

〉
〈
e−λIθI,1

〉n − E 〈fn〉E
〈
θI,1e

−λIθI,1
〉〈

e−λIθI,1
〉
∣∣∣∣∣∣ = o(1).

[11] De Sanctis & Franz (2009). Spin glasses: statics and dynamics.



Strategy of the proofs

From this we derive a decoupling lemma.

Lemma

Assume [H1]− [H2]. For all I ∈ I

Eλ

∣∣∣∣∣∣E
〈
θI,1e

−λIθI,1θI,2e
−λIθI,2

〉〈
e−λIθI,1e−λIθI,2

〉 −

[
E
〈
θI,1e

−λIθI,1
〉〈

e−λIθI,1
〉 ]2

∣∣∣∣∣∣ = o(1).

Asume that some m.o. does not concentrate. Define

YI(u) :=

∫ 1

0

∫ 1
0 θ̄Ie

−λI θ̄I dx∫ 1
0 e
−λI θ̄I dx

dv.

Given a subsequence s.t. the spins of every replica converge in
distribution, by A-H representation, this lemma implies that
a.s. VarYI = 0.



Strategy of the proofs

(!) Then, for all I ∈ I, YI is a.s. constant.

(!) True also for limits ap → 0 and derivatives ∂/∂ap.

Observation: if I = (ak), then

1

ak
YI

ak→0−−−→ R(k)
∞ .

We give order to K and by similar relations, the limits of all
m.o. are a.s. constant in the subseq. limit. Abs!



Questions?
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