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» For disordered systems with concave Hamiltonians
» we prove the concentration of multioverlaps,

» a representation of the asymptotic distribution of the spins,

» and asymptotic strong Gibbs decorrelation of spins.

(') — this symbol marks important points during the talk



Let J be real valued r.v.s and o € [—1; 1] random vector with
density

1
Gn(o|J) := Zn () eHN(”U),

where a.s. Hy € C?(Xy) is concave w.r.t. o and Zy(J)

normalisation.

Define the log partition function as

fN = EFN = EIOgZN(J).

We make the usual assumption that Var Fy /N Atee, g,



Replicas := independent samples from Gibbs measure with
same disorder J.

aé := 4-th spin of [-th replica.

K := set of sets of finite integers.

For k := (k1,...,k,) € K, the associated multioverlap (m.o.) is

N
R® = N1y (af)f - (o),
i=1

» n=1and k = 1: magnetisation.

» n=2and k= (1,1): overlap.



High dimensional inference

xo € XV parameters to estimate and y(zg) € (X')M
observations. We have

P(aly) = 2 P(e)Plyla).

High dimension: we consider N, M — 400, N/M = ©(1).
The Hamiltonian is

H(xly) := log(P(x)P(yl|z)).

(!) Objective: estimate log partition log Z or mutual
information I(xo;y). Both are related by a constant.



L:Yy X E'M — R is a loss. Define the estimator

x = argming ey, L(x',y).

I ——
Let 8 > 0 be an inverse temperature and

1 _ x
Plaly) = ze L0,

Then H(z|y) := —L(x,y). x is recovered at zero temperature.

(!) The estimator can be studied through log Z.



Regularised least squares linear regression:

. 2
@ = argming .y ||Az’ — y| |2 + f(x'),
with A — known matrix / f — convex function.

|
The associated Hamiltonian

H(zly) =~ || Az — yll; — f(x)

is then concave.

(!) This includes ridge (f = ||-||;) and LASSO (f = ||]|3).



Generalised linear models:

y = ¢(Axo) + 2,

with ¢(-) some function and z a normal vector of covariance Al

I
If assumed model is linear model (mismatch)

H(zly) = —log Po(@) — A" || Az —y][3,

where Py — assumed prior. If log Py(-) is convex, H is concave.

(') Here there are no Bayes-optimal identities.



[1] connection between Bayes-optimal inference and
M-estimators.

[2] many sparse inference problems.

[3] informational theoretical limit of a binary sparse model.

(') The proof requires multioverlap concentration.
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(!) Perturbations give “good properties” that
ensure concentrations.

We add a ridge regularisation term

EN
HE™(0) i= =L o2,

with ey — 0 and Ney — +o0.

(') This forces m.o. to concentrate w.r.t. Gibbs measure.



For I € Z, consider polynomials Py : [—1;1] — [0;1] s.t.

m

—il
Pr(z) := ap(z + 1)P.

Il
=}

The Py are convex on [—1;1].

The definition of Z makes ) ;.7 Pr uniformly summable and
the coefficients accumulate at 0.

Also, Pr(z) € [0, 1].



7 = (mr)1e7 1.1.d. Poisson of mean sy.

U := (U])jen)zez 1-i-d. uniform in [N].
A := (Ar)rez ii.d. uniform in [1/2;1].
sy s.t. sy — +oo and F — 0.

Add a second perturbation defined by

'Hpmss(o|7r U, \) Z)\IZPI O'UI

Iez  j=1

(1) H2™ is a.s. concave w.r.t. o.

(') Poisson perturbation forces full m.o. concentration.



We assume the following hypothesis:

|
> [H1]:as. Hy(o|J) € C}(Zy) and concave w.r.t. o,

> [H2): Hy (o, ..onld) £ Hy(opay, - opuld).

E(-) := expectation w.r.t. J.

Ex(+) := expectation w.r.t. A.



Assume [H1]. For all k,

IE,\]E<(R(k) _ <R(k)>>2> < Zizl K

Assume [H1] — [H2]. For all k,

i B (15 (1)) -,



Important consequences

Corollary (Asymptotic spin distribution)

Under [H1] — [H2], for every (N;);>1 s.t. Vi,l > 1, o} converge
in dist., there exists a probability measure v € B([—1;1]) and
(fori > 1) p; ~ v i.i.d., so that (c});>1 converge jointly in dist.
to samples from p;(-).

Corollary (Strong asymptotic spin independence)

Under [H1] — [H2], for all distinct i, ..., ik, and hy, ..., hg
continuous functions,

E((h1(0) -+ ha(04)) = (ha(0a)) -+ (ha(04,)))* =520

In [10], a softer decorrelation is derived from overlap
concentration.

[10] Talagrand. (2010). Mean field models for spin glasses: Vol. I.



These results are a step forward in two directions:

(!) Extending adaptive interpolation methods to the non
Bayes-optimal regime of inference and ML setting/ERM.

(!) Studying the relationship between the approaches based on
interpolation and Gordon’s min-max theorem.






Log-concave density f(-) if f = e?, for some ¢ : RV — R
concave.

Brascamp-Lieb’s variance inequality implies the following
corollary.

If Hessian of ¢ upper bounded by —el (e > 0), then for f € C!

Var f(X) < <E V().



(Xij)ij>1 tnvariant by permutations iff X;; 4 flu, vi, wj, z45);
where f: [0;1]* - R and u, v;, wj, 7 i.i.d. Unifl0;1].

By tightness and this, there is o : [0;1]* — [0;1] — s.t.,
1 d
o; = o (u, vi, wi, Tit),

along some subsequence and with (u, v;, wy, z;) as above.

(') These variables parametrise correlations.



Technical background: Aldous-Hoover representation

Meaning of uniform variables in A-H representation:

» u — only depends on disorder, correlates every spin of
every replica.

» v; — correlates same spin in different replicas.
» w; — correlates all the spins of the same replica.

» z;; — randomness particular of every single spin.

Obs: Gibbs mean (-) goes to fol : --fol(-)dw dx.



In this limit, we have that for everyn > 1 and k € K,

R —>R(k)(u Wi,y e ey Wh) —/ Ha(k’ u, v, wy) dv,

I<n

with a(kl) (u, v, wy) fo (u, v, wy, z)dx.

By Gibbs concentration of m.o.’s (Main Results) we get:

Let k> 1. We have that a.s. % (u,v,w) = a*) (u,v).



Strategy of the proofs

Lemma (Energy concentration)

Assume [H1] — [H2]. Let Er(o) :=>_L, Pr(oy:). For I € Z,
9

EAE (| Ef(0) — E (Ef(0)) |) < (5up* + v2)sy?,

We get Franz-de Sanctis [11] type ineq (kind of spin glass’
Ghirlanda-Guerra ids.). Define Hle = Pr(ah).

Theorem

Given [H1] — [H2], for alln > 1,1 € Z, and fyp : £ — [—1;1]

_ n l
<fn91,1€ A1 91,1> <01 16_)‘101*1>

Ex |E (e ATy —E(fn) RERZ =o(1).

[11] De Sanctis € Franz (2009). Spin glasses: statics and dynamics.



Strategy of the proofs

From this we derive a decoupling lemma.

Lemma
Assume [H1] — [H2]. For all1 € T

<91716—)\191,1 91726_>‘191’2 >
Ex|E <e—)\191,1e—)\191,2> B

2
<91716—)\191,1>
E =y = o(1).

Asume that some m.o. does not concentrate. Define

1 rlg 0
Ore=MYT dx
Y[('U,) = 'fol—, d?}.
o fo e=MOr (g
Given a subsequence s.t. the spins of every replica converge in

distribution, by A-H representation, this lemma implies that
a.s. VarY; = 0.



(!) Then, for all I € Z, Y7 is a.s. constant.
(') True also for limits a, — 0 and derivatives 0/0a,.

Observation: if I = (ay), then

ar—0

Ly, a0 pi)
ag

We give order to K and by similar relations, the limits of all
m.o. are a.s. constant in the subseq. limit. Abs!
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