Strong replica symmetry for log-concave Gibbs measures

Jean Barbier (ICTP - Italy) Dmitry Panchenko (U. Toronto - Canada) and Manuel Sáenz (ICTP - Italy)

Inference problems: algorithms and lower bounds Goethe-Universität Frankfurt September 2020

Introduction

- ▶ For disordered systems with concave Hamiltonians
- ▶ we prove the concentration of multioverlaps,
- ▶ a representation of the asymptotic distribution of the spins,
- ▶ and asymptotic strong Gibbs decorrelation of spins.

 $(!) \longrightarrow$ this symbol marks important points during the talk

Bounded spin Gibbs measure

Let J be real valued r.v.s and $\sigma \in [-1; 1]^N$ random vector with density

$$G_N(\sigma|J) := \frac{1}{\mathcal{Z}_N(J)} e^{\mathcal{H}_N(\sigma|J)},$$

where a.s. $\mathcal{H}_N \in \mathcal{C}^2(\Sigma_N)$ is concave w.r.t. σ and $\mathcal{Z}_N(J)$ normalisation.

Define the log partition function as

$$f_N := \mathbb{E}F_N := \mathbb{E}\log \mathcal{Z}_N(J).$$

We make the usual assumption that $\operatorname{Var} F_N/N \xrightarrow{N \to +\infty} 0$.

Setting and notations

Replicas := independent samples from Gibbs measure with same disorder J.

 $\sigma_i^l := i$ -th spin of *l*-th replica.

K := set of sets of finite integers.

Definition

For $k := (k_1, \ldots, k_n) \in K$, the associated multioverlap (m.o.) is

$$R^{(k)} := N^{-1} \sum_{i=1}^{N} (\sigma_i^1)^{k_1} \cdots (\sigma_i^n)^{k_n}.$$

▶
$$n = 1$$
 and $k = 1$: magnetisation

•
$$n = 2$$
 and $k = (1, 1)$: overlap.

 $\boldsymbol{x}_0 \in \Sigma^N$ parameters to estimate and $\boldsymbol{y}(\boldsymbol{x}_0) \in (\Sigma')^M$ observations. We have

$$P(\boldsymbol{x}|\boldsymbol{y}) = \frac{1}{\mathcal{Z}}P(\boldsymbol{x})P(\boldsymbol{y}|\boldsymbol{x}).$$

High dimension: we consider $N, M \to +\infty, N/M = \Theta(1)$.

The Hamiltonian is

$$\mathcal{H}(\boldsymbol{x}|\boldsymbol{y}) := \log(P(\boldsymbol{x})P(\boldsymbol{y}|\boldsymbol{x})).$$

(!) Objective: estimate log partition $\log \mathcal{Z}$ or mutual information $I(\boldsymbol{x}_0; \boldsymbol{y})$. Both are related by a constant.

$$\mathcal{L}: \Sigma_N imes \Sigma'_M o \mathbb{R}_{\geq 0}$$
 is a *loss*. Define the estimator $x := \operatorname{argmin}_{x' \in \Sigma_N} \mathcal{L}(x', y).$

Let $\beta > 0$ be an *inverse temperature* and

$$P(\boldsymbol{x}|\boldsymbol{y}) = rac{1}{\mathcal{Z}}e^{-eta\mathcal{L}(\boldsymbol{x},\boldsymbol{y})}$$

Then $\mathcal{H}(\boldsymbol{x}|\boldsymbol{y}) := -\mathcal{L}(\boldsymbol{x}, \boldsymbol{y})$. \boldsymbol{x} is recovered at zero temperature.

(!) The estimator can be studied through $\log \mathcal{Z}$.

Regularised least squares linear regression:

$$\boldsymbol{x} := \operatorname{argmin}_{\boldsymbol{x}' \in \Sigma_N} \left| \left| \boldsymbol{A} \boldsymbol{x}' - \boldsymbol{y} \right| \right|_2^2 + f(\boldsymbol{x}'),$$

with $A \rightarrow$ known matrix $/ f \rightarrow$ convex function.

The associated Hamiltonian

$$\mathcal{H}(m{x}|m{y}) := - ||m{A}m{x} - m{y}||_2^2 - f(m{x})$$

is then concave.

(!) This includes ridge $(f = ||\cdot||_1)$ and LASSO $(f = ||\cdot||_2^2)$.

Generalised linear models:

$$\boldsymbol{y} = \phi(\boldsymbol{A}\boldsymbol{x}_0) + \boldsymbol{z},$$

with $\phi(\cdot)$ some function and \boldsymbol{z} a normal vector of covariance $\Delta \mathbb{I}$.

If assumed model is linear model (mismatch)

$$\mathcal{H}(oldsymbol{x}|oldsymbol{y}) := -\log P_0(oldsymbol{x}) - \Delta^{-1} \left|\left|oldsymbol{A}oldsymbol{x} - oldsymbol{y}
ight|
ight|_2^2,$$

where $P_0 \to \text{assumed prior}$. If $\log P_0(\cdot)$ is convex, \mathcal{H} is concave.

(!) Here there are no Bayes-optimal identities.

[1] connection between Bayes-optimal inference and M-estimators.

[2] many sparse inference problems.

[3] informational theoretical limit of a binary sparse model.

(!) The proof requires multioverlap concentration.

^[1] Advani & Ganguli (2016). Adv. in Neur. Inf. Proc. Sys.

^[2] Coja-Oghlan et al. (2018). Advances in Mathematics, 333, 694-795.

^[3] Barbier et al. (2019) arXiv preprint arXiv:1806.05121.

[4] two-layer neural network with a first randomly weighted layer.

[5] Empirical Risk Minimisation applied to GLM.

[6] regularised Empirical Risk Minimisation for GLM data.

[4] Mei & Montanari (2019). arXiv preprint arXiv:1908.05355.

^[5] Aubin et al. (2020). arXiv preprint arXiv:2006.06560.

^[6] Taheri et al. (2020). arXiv preprint arXiv:2006.08917.

[7] and [8] regularised least squares for general feature matrices more general than Gaussian.

[9] m.o. concentration for Bayes-optimal inference.

(!) Many approaches based on Gordon min-max, interpolation and cavity methods.

^[7] Gerbelot et al. (2020). arXiv preprint arXiv:2006.06581.

^[8] Gerbelot et al. In Conference on Learning Theory (pp. 1682-1713).

^[9] Barbier & Panchenko (2020). arXiv preprint arXiv:2005.03115.

Main results

(!) Perturbations give "good properties" that ensure concentrations.

Gaussian perturbation

We add a *ridge regularisation* term

$$\mathcal{H}_N^{\mathrm{gauss}}(\sigma) := -\frac{\epsilon_N}{2} ||\sigma||^2 \,,$$

with $\epsilon_N \to 0$ and $N\epsilon_N \to +\infty$.

(!) This forces m.o. to concentrate w.r.t. Gibbs measure.

For $I \in \mathcal{I}$, consider polynomials $P_I : [-1; 1] \rightarrow [0; 1]$ s.t.

$$P_I(x) := \sum_{p=0}^{m-1} a_p (x+1)^p.$$

The P_I are convex on [-1; 1].

The definition of \mathcal{I} makes $\sum_{I \in \mathcal{I}} P_I$ uniformly summable and the coefficients accumulate at 0.

Also, $P_I(x) \in [0, 1]$.

Perturbed model

 $\pi := (\pi_I)_{I \in \mathcal{I}} \text{ i.i.d. Poisson of mean } s_N.$ $U := (U_j^I)_{j \in [N], I \in \mathcal{I}} \text{ i.i.d. uniform in } [N].$ $\lambda := (\lambda_I)_{I \in \mathcal{I}} \text{ i.i.d. uniform in } [1/2; 1].$ $s_N \text{ s.t. } s_N \to +\infty \text{ and } \frac{s_N}{N} \to 0.$

Poisson perturbation

Add a second perturbation defined by

$$\mathcal{H}_N^{\text{poiss}}(\sigma|\pi, U, \lambda) := -\sum_{I \in \mathcal{I}} \lambda_I \sum_{j=1}^{\pi_I} P_I(\sigma_{U_j^I}).$$

(!) $\mathcal{H}_N^{\text{poiss}}$ is a.s. concave w.r.t. σ .

(!) Poisson perturbation forces full m.o. concentration.

We assume the following hypothesis:

•
$$[H1]$$
: a.s. $\mathcal{H}_N(\sigma|J) \in \mathcal{C}^2(\Sigma_N)$ and concave w.r.t. σ ,

•
$$[H2]: \mathcal{H}_N(\sigma_1, \dots, \sigma_N | J) \stackrel{d}{=} \mathcal{H}_N(\sigma_{P(1)}, \dots, \sigma_{P(N)} | J).$$

 $\mathbb{E}(\cdot) :=$ expectation w.r.t. J.

 $\mathbb{E}_{\lambda}(\cdot) := \text{expectation w.r.t. } \lambda.$

Proposition (Gibbs m.o. concentration)

Assume [H1]. For all k,

$$\mathbb{E}_{\lambda} \mathbb{E} \left\langle \left(R^{(k)} - \left\langle R^{(k)} \right\rangle \right)^2 \right\rangle \leq \frac{\sum_{i=1}^n k_i^2}{N \epsilon_N}$$

Theorem (m.o. concentration)

Assume [H1] - [H2]. For all k,

$$\lim_{N \to +\infty} \mathbb{E}_{\lambda} \mathbb{E} \left\langle \left(R^{(k)} - \mathbb{E} \left\langle R^{(k)} \right\rangle \right)^2 \right\rangle = 0.$$

Corollary (Asymptotic spin distribution)

Under [H1] - [H2], for every $(N_j)_{j\geq 1}$ s.t. $\forall i, l \geq 1$, σ_i^l converge in dist., there exists a probability measure $\nu \in \mathcal{B}([-1;1])$ and (for $i \geq 1$) $\mu_i \sim \nu$ i.i.d., so that $(\sigma_i^l)_{l\geq 1}$ converge jointly in dist. to samples from $\mu_i(\cdot)$.

Corollary (Strong asymptotic spin independence)

Under [H1] - [H2], for all distinct i_1, \ldots, i_k , and h_1, \ldots, h_k continuous functions,

$$\mathbb{E}(\langle h_1(\sigma_{i_1}) \cdots h_k(\sigma_{i_k}) \rangle - \langle h_1(\sigma_{i_1}) \rangle \cdots \langle h_k(\sigma_{i_k}) \rangle)^2 \xrightarrow{N \to +\infty} 0$$

In [10], a softer decorrelation is derived from overlap concentration.

[10] Talagrand. (2010). Mean field models for spin glasses: Vol. I.

These results are a step forward in two directions:

(!) Extending adaptive interpolation methods to the non Bayes-optimal regime of inference and ML setting/ERM.

(!) Studying the relationship between the approaches based on interpolation and Gordon's min-max theorem.

Strategy of the proofs

Definition

Log-concave density $f(\cdot)$ if $f = e^{\phi}$, for some $\phi : \mathbb{R}^N \to \mathbb{R}$ concave.

Brascamp-Lieb's variance inequality implies the following corollary.

Corollary

If Hessian of ϕ upper bounded by $-\epsilon \mathbb{I}$ ($\epsilon > 0$), then for $f \in \mathcal{C}^1$

$$\operatorname{Var} f(X) \leq \frac{1}{\epsilon} \mathbb{E} \left| |\nabla f(X)| \right|^2.$$

Theorem (Aldous-Hoover)

 $(X_{ij})_{i,j\geq 1}$ invariant by permutations iff $X_{ij} \stackrel{d}{=} f(u, v_i, w_j, x_{ij});$ where $f: [0;1]^4 \to \mathbb{R}$ and u, v_i, w_j, x_{ij} i.i.d. Unif[0;1].

By tightness and this, there is $\sigma:[0;1]^4\to [0;1]\to {\rm s.t.},$

$$\sigma_i^l \xrightarrow{d} \sigma(u, v_i, w_l, x_{il}),$$

along some subsequence and with (u, v_i, w_l, x_{il}) as above.

(!) These variables parametrise correlations.

Technical background: Aldous-Hoover representation

Meaning of uniform variables in A-H representation:

- ▶ $u \rightarrow$ only depends on disorder, correlates every spin of every replica.
- $v_i \rightarrow \text{correlates same spin in different replicas.}$
- ▶ $w_l \rightarrow$ correlates all the spins of the same replica.
- $x_{il} \rightarrow$ randomness particular of every single spin.

Obs: Gibbs mean $\langle \cdot \rangle$ goes to $\int_0^1 \cdots \int_0^1 (\cdot) dw dx$.

Technical background: limits of m.o.'s

Lemma

In this limit, we have that for every $n \ge 1$ and $k \in K_n$,

$$R^{(k)} \xrightarrow{d} R^{(k)}_{\infty}(u, w_1, \dots, w_n) := \int_0^1 \prod_{l \le n} \bar{\sigma}^{(k_l)}(u, v, w_l) \, dv,$$

with
$$\bar{\sigma}^{(k_l)}(u, v, w_l) := \int_0^1 \sigma^{k_l}(u, v, w_l, x) dx.$$

By Gibbs concentration of m.o.'s (Main Results) we get:

Corollary

Let
$$k \ge 1$$
. We have that a.s. $\bar{\sigma}^{(k)}(u, v, w) = \bar{\sigma}^{(k)}(u, v)$.

Strategy of the proofs

Lemma (Energy concentration)

Assume [H1] – [H2]. Let
$$E_I(\sigma) := \sum_{j=0}^{\pi_I} P_I(\sigma_{U_j^I})$$
. For $I \in \mathcal{I}$,

$$\mathbb{E}_{\lambda} \mathbb{E} \left\langle \left| E_{I}(\sigma) - \mathbb{E} \left\langle E_{I}(\sigma) \right\rangle \right| \right\rangle \leq (5v_{N}^{1/4} + \sqrt{2})s_{N}^{1/2},$$

We get Franz-de Sanctis [11] type ineq (kind of spin glass' Ghirlanda-Guerra ids.). Define $\theta_{I,j}^l := P_I(\sigma_i^l)$.

Theorem

Given [H1] – [H2], for all $n \ge 1$, $I \in \mathcal{I}$, and $f_n : \Sigma_N^n \to [-1; 1]$

$$\mathbb{E}_{\lambda} \left| \mathbb{E} \frac{\left\langle f_n \theta_{I,1} e^{-\lambda_I \sum_{l=1}^n \theta_{I,1}^l} \right\rangle}{\left\langle e^{-\lambda_I \theta_{I,1}} \right\rangle^n} - \mathbb{E} \left\langle f_n \right\rangle \mathbb{E} \frac{\left\langle \theta_{I,1} e^{-\lambda_I \theta_{I,1}} \right\rangle}{\left\langle e^{-\lambda_I \theta_{I,1}} \right\rangle} \right| = o(1).$$

[11] De Sanctis & Franz (2009). Spin glasses: statics and dynamics.

Strategy of the proofs

From this we derive a decoupling lemma.

Lemma

Assume
$$[H1] - [H2]$$
. For all $I \in \mathcal{I}$

$$\mathbb{E}_{\lambda} \left| \mathbb{E} \frac{\left\langle \theta_{I,1} e^{-\lambda_{I} \theta_{I,1}} \theta_{I,2} e^{-\lambda_{I} \theta_{I,2}} \right\rangle}{\left\langle e^{-\lambda_{I} \theta_{I,1}} e^{-\lambda_{I} \theta_{I,2}} \right\rangle} - \left[\mathbb{E} \frac{\left\langle \theta_{I,1} e^{-\lambda_{I} \theta_{I,1}} \right\rangle}{\left\langle e^{-\lambda_{I} \theta_{I,1}} \right\rangle} \right]^{2} \right| = o(1).$$

Asume that some m.o. does not concentrate. Define

$$Y_I(u) := \int_0^1 \frac{\int_0^1 \bar{\theta}_I e^{-\lambda_I \bar{\theta}_I} dx}{\int_0^1 e^{-\lambda_I \bar{\theta}_I} dx} dv.$$

Given a subsequence s.t. the spins of every replica converge in distribution, by A-H representation, this lemma implies that a.s. $\operatorname{Var} Y_I = 0$.

(!) Then, for all $I \in \mathcal{I}$, Y_I is a.s. constant.

(!) True also for limits $a_p \to 0$ and derivatives $\partial/\partial a_p$.

Observation: if $I = (a_k)$, then

$$\frac{1}{a_k} Y_I \xrightarrow{a_k \to 0} R_\infty^{(k)}.$$

We give order to K and by similar relations, the limits of all m.o. are a.s. constant in the subseq. limit. <u>Abs!</u>

