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Inference problems
There are a large number

n of inputs
But only a small number
k of the inputs are active

Statistical models with n parameters:
Typically we need at least n pieces of data.

But if we know all but k of the parameters are zero,
we require less data.

Compressed sensing:
Typically solving simultaneous linear equations in n variables

requires n equations,
but if the solution is k-sparse (in some basis) we require fewer.

Pooled group testing…
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Types of problem
Adaptive

look at previous tests
before designing the next

Nonadaptive
all tests designed

in advance



Group testing

n items (soldiers)

k defective items (soldiers with syphilis)

T tests: “Does this group of items contain
at least one defective item?” (blood tests)



Main problem
n items

k defective items
T tests

Given n and k,
how many tests T do we need

to reliably work out
which items were defective?



Main problem
n items

k defective items
T tests

We can test individually with T = n tests.

If k is small, can we manage with fewer?



M Aldridge, O Johnson and J Scarlett
Group Testing: An Information Theory Perspective
Foundations and Trends in Communications

and Information Theory, 2019
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Why should I care?
Applications

Testing soldiers for syphilis
Testing for COVID-19 with limited test capacity

DNA screening
Management of wireless networks

Database management
Data compression

Cybersecurity
Graph learning

The counterfeit coin problem
…
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Nonlinear models
Search problems
Inverse problems



Why should I care?
Applications

Concrete example of
more general problems

A fun problem in its own right
Probability
Statistics

Computer science
Information theory

Combinatorics
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Types of group testing
Adaptive

Look at previous tests
before designing the next

Nonadaptive
All tests designed

in advance

Combinatorial
Exactly k defective items

Worst-case number of tests

Probabilistic
Each item defective with prob k/n

Typical number of tests

Very sparse
k constant
as n → ∞

Sparse
k grows like na

for a < 1

Linear
k ~ pn

grows linearly with n
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Coronavirus in England
England has about 55 million people.

It’s estimated that about 30,000 people
currently have COVID-19

Which is the most important calculation?

This is 30,000 infected people,
but the population is irrelevant

The number of infected people is roughly
(population)0.58

The number of infected people is roughly
0.05% of the population
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Mathematicians like to think that 
“sparse” means k =	o(n).

But consider if k being
“small but linear in n”

might be more relevant
in the real world.
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Lower bound
For successful group testing, we need

𝑇 ≥ log!
𝑛
𝑘 tests

Proof for combinatorialists:

There are 𝑛𝑘 possible defective sets.

There are up to 2" sequences of test results.
Each possible defective set needs

a unique outcome sequence of test results.



Lower bound
For successful group testing, we need

𝑇 ≥ log!
𝑛
𝑘 tests

Proof for information theorists:

We need log!
𝑛
𝑘 bits of information

to define the defective set.

We can get at most 1 bit of information
from each test.
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Individual testing
𝑇 = 𝑛

Very sparse regime (k constant):
log!

𝑛
𝑘 ~ 𝑘 log! 𝑛

Sparse regime (k	= na):
log!

𝑛
𝑘 ~ 𝑘 log!

𝑛
𝑘
= (1 − 𝑎)𝑘 log! 𝑛

Linear regime (k	= pn):
log!

𝑛
𝑘 ~ 𝐻 𝑝 𝑛 where 𝐻 𝑝 is the binary entropy
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In the linear regime,
naïve “sparsity-ignorant” algorithms

can be competitive
or even optimal.

In the linear regime,
order-optimal behaviour

can be obvious;
try to find the constants.
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Algorithms
for adaptive

group testing



Binary splitting
(Sobel & Groll, 1959)

Keep splitting the set in half,
keeping a half that has

a defective item in it
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Simple binary splitting
(Sobel & Groll, 1959)

For the combinatorial (k known) model:

Repeat k times:

Use binary splitting to find a defective.
Remove it.



Simple binary splitting
(Sobel & Groll, 1959)

For the probabilistic (k unknown) model:

1)   Test the whole set.

If the test is positive:
Use binary splitting to find a defective.
Remove it, and return to 1).

If the test is negative:
All items are nondefective. Halt.
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𝑘 log! 𝑛 + 𝑂(𝑘)
tests.



Simple binary splitting

Theorem:
The simple binary splitting algorithm requires

𝑘 log! 𝑛 + 𝑂(𝑘)
tests.

k rounds of binary splitting

a set of size n
“book-keeping” tests 

and rounding errors



Simple binary splitting

Theorem:
The simple binary splitting algorithm requires

𝑘 log! 𝑛 + 𝑂(𝑘)
tests.

Very sparse regime: optimal scaling and constant

Sparse regime: optimal scaling; suboptimal constant

Linear regime: worse than individual testing for large n



Generalized binary splitting
(Hwang, 1972)

In the sparse and linear regimes,
we waste too much time

at the beginning of each stage
testing sets that are

almost certain to contain a defective item



Generalized binary splitting
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Split into k sets of size n/k
For each set do simple binary splitting:
1)   Test the whole set.

If the test is positive:
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Remove it, and return to 1).
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Generalized binary splitting
(Hwang, 1972)

Split into k sets of size n/k
For each set do simple binary splitting:
1)   Test the whole set.

If the test is positive:
Use binary splitting to find a defective.
Remove it, and return to 1).

If the test is negative:
All items are nondefective. Halt.

On average,

one defective each



Generalized binary splitting
(Hwang, 1972; Baldassini–Johnson–Aldridge, 2013)

Theorem:
The generalized binary splitting

algorithm requires

𝑘 log!
𝑛
𝑘
+ 𝑂(𝑘)

tests.

This is optimal in the sparse regime.



Generalized binary splitting
(Hwang, 1972; Baldassini–Johnson–Aldridge, 2013)

Theorem:
The generalized binary splitting

algorithm requires

𝑘 log!
𝑛
𝑘
+ 𝑂(𝑘)

tests.

This is optimal in the sparse regime.
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Don’t waste effort
on measurements

if you think you know
what the answer will be.
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Linear regime
Split into k sets of size n/k = 1/p

For each set do simple binary splitting.

The generalized binary splitting algorithm requires

𝑘 log!
𝑛
𝑘
+ 𝑂 𝑘 = 𝑝 log!

1
𝑝
𝑛 + 𝑂(𝑛)

tests

Might not be
an integer

Need to be careful

with “error term”
Suboptimal compared to 

counting bound



Instead we’ll try…
1) Pick a set of size m = 2s.

2)   Test the set.

If the test is positive:
Use binary splitting to find a defective.
Return to 1).

If the test is negative:
All items in the set are nondefective.
Return to 1).

(Parameter to be chosen later)



Instead we’ll try…
1) Pick a set of size m = 2s.

2)   Test the set.

If the test is positive:
Use binary splitting to find a defective.
Return to 1).

If the test is negative:
All items in the set are nondefective.
Return to 1).

m = 1: Individual testing
m = 2: Fischer–Klasner–Wegenera, 1999



Combinatorial testing
At each run through the loop we find:

m =  2s nondefectives
in 1 test

or

1 defective
in 1 + log2 m =  s + 1 tests
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Combinatorial testing

Worst-case analysis:
Assume we’re unlucky

At each run through the loop we find:

m =  2s nondefectives
in 1 test

or

1 defective
and up to m – 1  =  2s – 1 nondefectives

in 1 + log2 m =  s + 1 tests



Combinatorial testing
Each of the k defectives requires

1 + log2 m = s + 1 tests.

Each set of m = 2s nondefectives
requires 1 test.



Combinatorial testing
Each of the k defectives requires

1 + log2 m = s + 1 tests.

Each set of m = 2s nondefectives
requires 1 test.

𝑇 = 𝑠 + 1 𝑘 +
1
2#

𝑛 − 𝑘

= (𝑠 + 1)𝑝 +
1
2#
(1 − 𝑝) 𝑛
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Open problem
Prove that individual testing

is optimal for p ≥ 1/3
for combinatorial testing.

(Conjectured by Hu–Hwang–Wang, 1981)



Probabilistic testing
At each run through the loop we find:

m =  2s nondefectives
in 1 test

or

1 defective
and up to m – 1  =  2s – 1 nondefectives

in 1 + log2 m =  s + 1 tests



Probabilistic testing

How well do we doon average?

At each run through the loop we find:

m =  2a nondefectives
in 1 test

or

1 defective
and up to m – 1  =  2a – 1 nondefectives

in 1 + log2 m =  a + 1 tests
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The algorithm
Aldridge (2019) shows that for q = 1 – p:

Average tests per loop:
𝐹 = 𝑞$ × 1 + (1 − 𝑞$)(1 + log!𝑚)

Average number of items classified per loop:

𝐺 = 𝑚𝑞! + &
"#$

!

𝑗𝑝𝑞"

Average number of tests to classify all items:
𝑇 = 𝐹𝑛/𝐺
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Beats individual testing
for p < 0.382

which is optimal (Ungar, 1960)



Rate

It can be useful to look at the “rate”

Rate = bits learned per test = n H(p)/T

ratio of lower bound
to actual number of tests
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Improvement

We can sometimes do slightly better
for probabilistic testing

if we allow the set size m to not be a power of 2.

Use a Huffman tree for uniform probabilities
to organize the binary splitting.

(Zaman–Pippenger, 2016; Aldridge 2019)
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Open problem
Improve on these algorithms,

or show they are optimal.



Adaptive testing
in the linear regime

We need to take greater care with “error terms”.

We need to take care that parameters
that need to be integers are integers.

There can be a bigger difference between
average-case and worst-case behaviour.

Naïve algorithms can be optimal:
try to find out when this is.



4
Nonadaptive
group testing



Nonadaptive testing
The entire test design is fixed before we start

then all tests carried out in parallel

Combinatorial testing Probabilistic testing

Exactly k	defective items Each item is independently 
defective with probability k/n

Must be certain to succeed 
whichever k items it is

Want to succeed with
high probability as 𝑛 → ∞
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Combinatorial nonadaptive

Individual testing is optimal for 𝑘 ≿ 𝑛
(D’yachkov–Rykov, 1982)

So the linear regime
is just the same as

some of the “denser” parts
of the sparse regime.



Nonadaptive testing
The entire test design is fixed before we start

then all tests carried out in parallel

Combinatorial testing Probabilistic testing

Exactly k	defective items Each item is independently 
defective with probability k/n

Must be certain to succeed 
whichever k items it is

Want to succeed with
high probability as 𝑛 → ∞



Probabilistic nonadaptive
In the very sparse (k constant) regime, we need

𝑇 = 𝑘 log! 𝑛
tests to succeed, 

which matches the counting bound.
(Freidlina, 1975; Sebő, 1982)



Probabilistic nonadaptive
In the very sparse (k constant) regime, we need

𝑇 = 𝑘 log! 𝑛
tests to succeed,

which matches the counting bound.

Test items according to a “Bernoulli” design:
Each item is placed in each test independently

with probability 𝑝 = 1 − 2%&/( .



Probabilistic nonadaptive
In the sparse (k	= na) regime, we need

𝑇 = max 𝑘 log!
"
#
, $
%& !

𝑘 log! 𝑘

tests to succeed, 
which matches the counting bound for a <	0.41.

Atia–Saligrama, 2012
Chen–Che–Jaggi–Saligrama, 2011
Aldridge–Baldassini–Johnson, 2014

Aldridge–Baldassini–Gunderson, 2017
Scarlett–Cevher, 2017

Johnson–Aldridge–Scarlett, 2019
Coja-Oghlan–Gebhard–Hahn-Klimroth–Loick, 2019
Coja-Oghlan–Gebhard–Hahn-Klimroth–Loick, 2020



Probabilistic nonadaptive
In the sparse (k	= na) regime, we need

𝑇 = max 𝑘 log!
"
#
, $
%& !

𝑘 log! 𝑘

tests to succeed, 
which matches the counting bound for a <	0.41.

Test items according to a “constant tests-per-item” design:
Each item is placed in 𝐿 = ln 2 𝑇/𝑘 tests

chosen uniformly and independently at random.

(Although for a <	1/3, the Bernoulli design is fine too.)



Probabilistic nonadaptive
In the linear (k	= pn) regime, we need

𝑇 = 𝑛
tests to succeed, 

so individual testing is optimal.
(Aldridge, 2018)



Probabilistic nonadaptive

Idea of the proof:

Supposed an item is “hidden”:
every test that item is in contains a(nother) defective item.

We can’t be sure whether the item is defective or nondefective.
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Probabilistic nonadaptive

Idea of the proof:

Supposed an item is “hidden”:
every test that item is in contains a(nother) defective item.

We can’t be sure whether the item is defective or nondefective.

In the very sparse or sparse regimes,
we’re safe to guess it’s nondefective.

But in the linear regime, we might guess wrongly.



Probabilistic nonadaptive

Idea of the proof:

If 𝑇 < 𝑛,
then individual tests are wasted,

as they reduce the “tests per item” available.

So we can remove individual (or empty) tests,
and assume all tests have weight at least 𝑤" = 2.
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Idea of the proof:
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Probabilistic nonadaptive
Idea of the proof:

Check that the probability an item is hidden
averaged over the item i
is bounded away from 0.

Then there’s some item
with positive probability of being hidden.

Then there’s a positive probability
we guess wrongly whether or not it’s defective.



Probabilistic nonadaptive
In the linear (k	= pn) regime, with

𝑇 < 𝑛
the probability of success
is bounded away from 1...

(Aldridge, 2018)

…and in fact tends to 0.
(Heng–Scarlett, 2020)



Nonadaptive inference
in the linear regime

Naïve algorithms can be optimal.

This is because we can’t just assume
an input is non-active
if we lack evidence.



Probabilistic nonadaptive

This doesn’t mean that
nonadaptive group testing ideas

are not useful in the linear regime.

We can find many
defective and nondefective items

in fewer than n tests
(just not all of them)

(Heng–Scarlett, 2020)



5
In closing…



Things I didn’t talk about

Group testing with noise
where the test results are sometimes wrong

Group testing with two (or more) stages
between adaptive and nonadaptive

Quantitative group testing:
We have a (possibly imperfect) measure

of how many defective items are in the test



M Aldridge, O Johnson and J Scarlett
Group Testing: An Information Theory Perspective
Foundations and Trends in Communications

and Information Theory, 2019

Preprint:
arXiv:1902.06002



Conclusions
Consider if the linear regime might be 
important for your inference problems.

Naïve sparsity-unaware algorithms
(like individual testing) can be optimal.

Order-optimality is good,
but look out for constants too.

“Error terms” often need more care.


