## Inference Problems

in the Linear Regime Lessons from group testing


Matthew Aldridge
University of Leeds, UK

## 1

Inference
problems

## Inference problems

There are a large number $n$ of inputs

Inferring all
their values takes
many (perhaps n)
measurements

## Inference problems

There are a large number $n$ of inputs

Inferring all their values takes many (perhaps $n$ ) measurements

But only a small number $k$ of the inputs are active

Finding the active inputs and inferring their values takes
few (perhaps $k \log n$ )
measurements

## Inference problems

There are a large number $n$ of inputs

But only a small number $k$ of the inputs are active

Statistical models with n parameters:
Typically we need at least $n$ pieces of data.
But if we know all but $k$ of the parameters are zero, we require less data.

## Inference problems

There are a large number $n$ of inputs

But only a small number $k$ of the inputs are active

Statistical models with $n$ parameters:
Typically we need at least $n$ pieces of data.
But if we know all but $k$ of the parameters are zero, we require less data.

## Compressed sensing:

Typically solving simultaneous linear equations in $n$ variables requires $n$ equations,
but if the solution is $k$-sparse (in some basis) we require fewer.

## Inference problems

There are a large number $n$ of inputs

But only a small number $k$ of the inputs are active

Statistical models with n parameters:
Typically we need at least $n$ pieces of data.
But if we know all but $k$ of the parameters are zero, we require less data.

## Compressed sensing:

Typically solving simultaneous linear equations in $n$ variables requires $n$ equations,
but if the solution is $k$-sparse (in some basis) we require fewer.
Pooled group testing...

## Group testing



Dorfman, 1943

## Types of problem

## Adaptive

look at previous tests before designing the next

## Nonadaptive

all tests designed
in advance

## Group testing

## $n$ items (soldiers)

$k$ defective items (soldiers with syphilis)
$T$ tests: "Does this group of items contain at least one defective item?" (blood tests)

## Main problem

## $n$ items <br> $k$ defective items

## $T$ tests

## Given $n$ and $k$,

how many tests $T$ do we need to reliably work out which items were defective?

## Main problem

$n$ items $k$ defective items $T$ tests

We can test individually with $T=n$ tests.

If $k$ is small, can we manage with fewer?

M Aldridge, O Johnson and J Scarlett Group Testing: An Information Theory Perspective Foundations and Trends in Communications and Information Theory, 2019

## Preprint:

arXiv:1902.06002


Why should I care?

## Why should I care?

## Applications

Testing soldiers for syphilis
Testing for COVID-19 with limited test capacity DNA screening
Management of wireless networks
Database management
Data compression
Cybersecurity
Graph learning
The counterfeit coin problem

# Why should I care? 

## Applications

## Concrete example of more general problems <br> Sparse inference, $p>n$ statistics <br> Nonlinear models <br> Search problems <br> Inverse problems

## Why should I care?

## Applications

## Concrete example of more general problems

A fun problem in its own right Probability
Statistics
Computer science Information theory
Combinatorics

## Types of group testing

Adaptive<br>Look at previous tests<br>before designing the next

Nonadaptive
All tests designed
in advance

## Types of group testing

Adaptive<br>Look at previous tests<br>before designing the next

Nonadaptive
All tests designed
in advance

## Types of group testing

Adaptive<br>Look at previous tests<br>before designing the next

Worst-case number of tests

## Combinatorial

Exactly $k$ defective items

Nonadaptive
All tests designed
in advance

## Probabilistic

Each item defective with prob k/n
Typical number of tests

## Types of group testing

Adaptive<br>Look at previous tests<br>before designing the next

Nonadaptive
All tests designed
in advance

## Combinatorial

Exactly $k$ defective items
Worst-case number of tests

## Probabilistic

Each item defective with prob $\mathrm{k} / \mathrm{n}$
Typical number of tests

Very sparse
$k$ constant
as $n \rightarrow \infty$

## Sparse

$k$ grows like $n^{a}$
for $a<1$

# Coronavirus in England 

England has about 55 million people.
It's estimated that about 30,000 people currently have COVID-19

## Coronavirus in England

England has about 55 million people.
It's estimated that about 30,000 people currently have COVID-19

Which is the most important calculation?

## Coronavirus in England

England has about 55 million people.
It's estimated that about 30,000 people currently have COVID-19

Which is the most important calculation?
This is 30,000 infected people, but the population is irrelevant

## Coronavirus in England

England has about 55 million people.
It's estimated that about 30,000 people currently have COVID-19

Which is the most important calculation?
This is 30,000 infected people, but the population is irrelevant

The number of infected people is roughly (population) ${ }^{0.58}$

## Coronavirus in England

England has about 55 million people.
It's estimated that about 30,000 people currently have COVID-19

## Which is the most important calculation?

This is 30,000 infected people, but the population is irrelevant

The number of infected people is roughly (population) ${ }^{0.58}$

The number of infected people is roughly $0.05 \%$ of the population

## Types of group testing

Adaptive<br>Look at previous tests<br>before designing the next

Nonadaptive
All tests designed
in advance

## Combinatorial

Exactly $k$ defective items
Want to be certain of success

## Probabilistic

Each item defective with prob k/n Average-case number of tests

Very sparse
$k$ constant
as $n \rightarrow \infty$

## Sparse

$k$ grows like $n^{a}$
for $a<1$

## Types of group testing

Adaptive<br>Look at previous tests<br>before designing the next

## Nonadaptive

All tests designed
in advance

## Combinatorial

Exactly $k$ defective items
Want to be certain of success

## Probabilistic

Each item defective with prob k/n Average-case number of tests

## Very sparse $k$ constant as $n \rightarrow \infty$

$$
\begin{gathered}
\text { Sparse } \\
k \text { grows like } n^{a} \\
\text { for } a<1
\end{gathered}
$$

Linear
$k \sim p n$
grows linearly with $n$

Mathematicians like to think that "sparse" means $k=o(n)$.

But consider if $k$ being "small but linear in $n$ "
might be more relevant in the real world.


## Lower bound

For successful group testing, we need

$$
T \geq \log _{2}\binom{n}{k} \text { tests }
$$

## Lower bound

## For successful group testing, we need

$$
T \geq \log _{2}\binom{n}{k} \text { tests }
$$

## Proof for combinatorialists:

There are $\binom{n}{k}$ possible defective sets.
There are up to $2^{T}$ sequences of test results.
Each possible defective set needs a unique outcome sequence of test results.

## Lower bound

For successful group testing, we need

$$
T \geq \log _{2}\binom{n}{k} \text { tests }
$$

## Proof for information theorists:

We need $\log _{2}\binom{n}{k}$ bits of information to define the defective set.

We can get at most 1 bit of information from each test.

## Lower bound

$$
T \geq \log _{2}\binom{n}{k}
$$

Very sparse regime ( $k$ constant):

$$
\log _{2}\binom{n}{k} \sim k \log _{2} n
$$

## Lower bound

$$
T \geq \log _{2}\binom{n}{k}
$$

Very sparse regime ( $k$ constant):

$$
\log _{2}\binom{n}{k} \sim k \log _{2} n
$$

Sparse regime $\left(k=n^{a}\right)$ :

$$
\log _{2}\binom{n}{k} \sim k \log _{2} \frac{n}{k}=(1-a) k \log _{2} n
$$

## Lower bound

$$
T \geq \log _{2}\binom{n}{k}
$$

Very sparse regime ( $k$ constant):

$$
\log _{2}\binom{n}{k} \sim k \log _{2} n
$$

Sparse regime ( $k=n^{a}$ ):

$$
\log _{2}\binom{n}{k} \sim k \log _{2} \frac{n}{k}=(1-a) k \log _{2} n
$$

Linear regime $(k=p n)$ :
$\log _{2}\binom{n}{k} \sim H(p) n$ where $H(p)$ is the binary entropy

## Individual testing

$$
T=n
$$

Very sparse regime ( $k$ constant):

$$
\log _{2}\binom{n}{k} \sim k \log _{2} n
$$

Sparse regime ( $k=n^{a}$ ):

$$
\log _{2}\binom{n}{k} \sim k \log _{2} \frac{n}{k}=(1-a) k \log _{2} n
$$

Linear regime $(k=p n)$ :
$\log _{2}\binom{n}{k} \sim H(p) n$ where $H(p)$ is the binary entropy

In the linear regime,
naïve "sparsity-ignorant" algorithms can be competitive or even optimal.

In the linear regime,
naïve "sparsity-ignorant" algorithms can be competitive or even optimal.

In the linear regime, order-optimal behaviour can be obvious; try to find the constants.

## 3


for adaptive
group testing

## Binary splitting (Sobel \& Groll, 1959)

Keep splitting the set in half, keeping a half that has a defective item in it

## Binary splitting



## Simple binary splitting (Sobel \& Groll, 1959)

## For the combinatorial (k known) model:

Repeat k times:
Use binary splitting to find a defective.
Remove it.

## Simple binary splitting (Sobel \& Groll, 1959)

For the probabilistic (k unknown) model:

1) Test the whole set.

If the test is positive:
Use binary splitting to find a defective. Remove it, and return to 1).

If the test is negative:
All items are nondefective. Halt.

## Simple binary splitting

## Theorem:

The simple binary splitting algorithm requires

$$
k \log _{2} n+O(k)
$$

tests.

## Simple binary splitting

## Theorem:

The simple binary splitting algorithm requires

$$
{ }^{\text {K rounds of }} \text { o } k \log _{2} n+O(k)
$$

## Simple binary splitting

## Theorem:

The simple binary splitting algorithm requires

$$
k \log _{2} n+O(k)
$$

tests.
Very sparse regime: optimal scaling and constant
Sparse regime: optimal scaling; suboptimal constant
Linear regime: worse than individual testing for large $n$

## Generalized binary splitting

 (Hwang, 1972)In the sparse and linear regimes,
we waste too much time at the beginning of each stage testing sets that are almost certain to contain a defective item

## Generalized binary splitting

 (Hwang, 1972)
## Split into $k$ sets of size $n / k$

For each set do simple binary splitting:

1) Test the whole set.

If the test is positive:
Use binary splitting to find a defective. Remove it, and return to 1).

If the test is negative:
All items are nondefective. Halt.

## Generalized binary splitting

## (Hwang, 1972)

## Split into $k$ sets of size $n / k$

For each set do simple binary splitting:

1) Test the whole set.

If the test is positive:
Use binary splitting to find a defective.
Remove it, and return to 1).
If the test is negative:
All items are nondefective. Halt.

# Generalized binary splitting (Hwang, 1972; Baldassini-Johnson-Aldridge, 2013) 

## Theorem:

The generalized binary splitting algorithm requires

$$
k \log _{2} \frac{n}{k}+O(k)
$$

tests.
This is optimal in the sparse regime.

## Generalized binary splitting

 (Hwang, 1972; Baldassini-Johnson-Aldridge, 2013)

## Don't waste effort

 on measurementsif you think you know
what the answer will be.

## Linear regime

## Split into $k$ sets of size $n / k$

For each set do simple binary splitting.
The generalized binary splitting algorithm requires

$$
k \log _{2} \frac{n}{k}+O(k)
$$

tests

## Linear regime

## Split into $k$ sets of size $n / k=1 / p$

For each set do simple binary splitting.
The generalized binary splitting algorithm requires

$$
\begin{gathered}
k \log _{2} \frac{n}{k}+O(k)=\left(p \log _{2} \frac{1}{p}\right) n+O(n) \\
\text { tests }
\end{gathered}
$$

## Linear regime

## Split into $k$ sets of size $n / k=1 / p$

For each set do simple binary splitting.
The generalized binary splitting algorithm requires

$$
\begin{gathered}
k \log _{2} \frac{n}{k}+O(k)=\left(p \log _{2} \frac{1}{p}\right) n+O(n) \\
\text { tests }
\end{gathered}
$$

## Linear regime

## Split into $k$ sets of size $n / k=1 / p$

For each set do simple binary splitting.
The generalized binary splitting algorithm requires

$$
k \log _{2} \frac{n}{k}+O(k)=\left(p \log _{2} \frac{1}{p}\right) n+O(n)
$$ tests

## Linear regime

## Split into $k$ sets of size $n / k=1 / p$

For each set do simple binary splitting.
The generalized binary splitting algorithm requires

$$
k \log _{2} \frac{n}{k}+O(k)=\left(p \log _{2} \frac{1}{p}\right)^{\text {Suboptimal compare }} \begin{aligned}
& \text { tests } \\
& \text { counting bound to }
\end{aligned}+O(n)
$$

## Instead we'll try...

$$
\begin{aligned}
& \text { (Darameter to } b_{\theta} \\
& =2^{s} .
\end{aligned}
$$

1) Pick a set of size $m=2^{s}$. ${ }^{\text {. }}$ tor to
2) Test the set.

If the test is positive:
Use binary splitting to find a defective. Return to 1).
If the test is negative:
All items in the set are nondefective.
Return to 1).

## Instead we'll try...

1) Pick a set of size $m=2^{s}$.

$$
m=1 \text { : Individual testing }
$$

2) Test the set. $m=2$ : Fischer-Klasner-Wegenera, 1999

If the test is positive:
Use binary splitting to find a defective. Return to 1).

If the test is negative:
All items in the set are nondefective.
Return to 1).

## Combinatorial testing

At each run through the loop we find:

$$
\begin{gathered}
m=2^{s} \text { nondefectives } \\
\text { in } 1 \text { test }
\end{gathered}
$$

## or

> 1 defective in $1+\log _{2} m=s+1$ tests

## Binary splitting



## Binary splitting



## Combinatorial testing

At each run through the loop we find:

$m=2^{s}$ nondefectives<br>in 1 test

## or

1 defective

$$
\text { in } 1+\log _{2} m=s+1 \text { tests }
$$

## Combinatorial testing

At each run through the loop we find:

$$
\begin{gathered}
m=2^{s} \text { nondefectives } \\
\text { in } 1 \text { test }
\end{gathered}
$$

## or

1 defective
and up to $m-1=2^{s}-1$ nondefectives

$$
\text { in } 1+\log _{2} m=s+1 \text { tests }
$$

## Combinatorial testing

At each run through the loop we find:

$$
\begin{gathered}
m=2^{s} \text { nondefectives } \\
\text { in } 1 \text { test }
\end{gathered}
$$

or | Worst-case analysis: |
| :---: |
| Assume we're unlucky |

1 defective
in $1+\log _{2} m=s+1$ tests

## Combinatorial testing

## Each of the $k$ defectives requires

$$
1+\log _{2} m=s+1 \text { tests. }
$$

Each set of $m=2^{s}$ nondefectives requires 1 test.

## Combinatorial testing

## Each of the $k$ defectives requires

$$
1+\log _{2} m=s+1 \text { tests. }
$$

Each set of $m=2^{s}$ nondefectives requires 1 test.

$$
\begin{aligned}
T & =(s+1) k+\frac{1}{2^{s}}(n-k) \\
& =\left((s+1) p+\frac{1}{2^{s}}(1-p)\right) n
\end{aligned}
$$




## Open problem

## Prove that individual testing is optimal for $p \geq 1 / 3$ for combinatorial testing.

(Conjectured by Hu-Hwang-Wang, 1981)

## Probabilistic testing

At each run through the loop we find:

$$
\begin{gathered}
m=2^{s} \text { nondefectives } \\
\text { in } 1 \text { test }
\end{gathered}
$$

## or

1 defective
and up to $m-1=2^{s}-1$ nondefectives in $1+\log _{2} m=s+1$ tests

## Probabilistic testing

At each run through the loop we find:

$$
\begin{gathered}
m=2^{a} \text { nondefectives } \\
\text { in } 1 \text { test }
\end{gathered}
$$

or How well do we do
on average?

## 1 defective

and up to $m-1=2^{a}-1$ nondefectives
in $1+\log _{2} m=a+1$ tests

## The algorithm

Aldridge (2019) shows that for $q=1-p$ :

$$
\begin{gathered}
\text { Average tests per loop: } \\
F=q^{m} \times 1+\left(1-q^{m}\right)\left(1+\log _{2} m\right)
\end{gathered}
$$

## The algorithm

Aldridge (2019) shows that for $q=1-p$ :

$$
\begin{gathered}
\text { Average tests per loop: } \\
F=q^{m} \times 1+\left(1-q^{m}\right)\left(1+\log _{2} m\right)
\end{gathered}
$$

Average number of items classified per loop:

$$
G=m q^{m}+\sum_{j=1}^{m} j p q^{j}
$$

## The algorithm

Aldridge (2019) shows that for $q=1-p$ :

$$
\begin{gathered}
\text { Average tests per loop: } \\
F=q^{m} \times 1+\left(1-q^{m}\right)\left(1+\log _{2} m\right)
\end{gathered}
$$

Average number of items classified per loop:

$$
G=m q^{m}+\sum_{j=1}^{m} j p q^{j}
$$

Average number of tests to classify all items:

$$
T=F n / G
$$




## Rate

It can be useful to look at the "rate"
Rate $=$ bits learned per test $=n H(p) / T$
ratio of lower bound to actual number of tests


## Improvement

We can sometimes do slightly better for probabilistic testing
if we allow the set size $m$ to not be a power of 2 .
Use a Huffman tree for uniform probabilities to organize the binary splitting.
(Zaman-Pippenger, 2016; Aldridge 2019)


## Open problem

Improve on these algorithms, or show they are optimal.

## Adaptive testing in the linear regime

We need to take greater care with "error terms".
We need to take care that parameters that need to be integers are integers.

There can be a bigger difference between average-case and worst-case behaviour.

Naïve algorithms can be optimal: try to find out when this is.

## 4

Nonadaptive
group testing

## Nonadaptive testing

The entire test design is fixed before we start then all tests carried out in parallel

Combinatorial testing

Exactly $k$ defective items

Probabilistic testing
Each item is independently defective with probability $k / n$

Must be certain to succeed whichever $k$ items it is

Want to succeed with
high probability as $n \rightarrow \infty$

## Nonadaptive testing

The entire test design is fixed before we start then all tests carried out in parallel

Combinatorial testing

Exactly $k$ defective items

Probabilistic testing Each item is independently
defective with probability $k / n$

Must be certain to succeed whichever $k$ items it is

Want to succeed with high probability as $n \rightarrow \infty$

# Combinatorial nonadaptive 

Individual testing is optimal for $k \succsim \sqrt{n}$ (D'yachkov-Rykov, 1982)

So the linear regime is just the same as some of the "denser" parts of the sparse regime.

## Nonadaptive testing

The entire test design is fixed before we start then all tests carried out in parallel

Combinatorial testing

Exactly $k$ defective items

Must be certain to succeed whichever $k$ items it is

Probabilistic testing
Each item is independently defective with probability $k / n$

Want to succeed with high probability as $n \rightarrow \infty$

## Probabilistic nonadaptive

In the very sparse ( $k$ constant) regime, we need

$$
T=k \log _{2} n
$$

tests to succeed,
which matches the counting bound.
(Freidlina, 1975; Sebő, 1982)

## Probabilistic nonadaptive

In the very sparse ( $k$ constant) regime, we need

$$
T=k \log _{2} n
$$

tests to succeed,
which matches the counting bound.
Test items according to a "Bernoulli" design: Each item is placed in each test independently with probability $p=1-2^{-1 / k}$.

## Probabilistic nonadaptive

In the sparse $\left(k=n^{a}\right)$ regime, we need

$$
T=\max \left\{k \log _{2} \frac{n}{k}, \frac{1}{\ln 2} k \log _{2} k\right\}
$$

tests to succeed,
which matches the counting bound for $a<0.41$.

> Atia-Saligrama, 2012
> Chen-Che-Jaggi-Saligrama, 2011
> Aldridge-Baldassini-Johnson, 2014
> Aldridge-Baldassini-Gunderson, 2017
> Scarlett-Cevher, 2017
> Johnson-Aldridge-Scarlett, 2019
> Coja-Oghlan-Gebhard-Hahn-Klimroth-Loick, 2019
> Coja-Oghlan-Gebhard-Hahn-Klimroth-Loick, 2020

## Probabilistic nonadaptive

In the sparse $\left(k=n^{a}\right)$ regime, we need

$$
T=\max \left\{k \log _{2} \frac{n}{k}, \frac{1}{\ln 2} k \log _{2} k\right\}
$$

tests to succeed,<br>which matches the counting bound for $a<0.41$.

Test items according to a "constant tests-per-item" design:
Each item is placed in $L=(\ln 2) T / k$ tests chosen uniformly and independently at random.
(Although for $a<1 / 3$, the Bernoulli design is fine too.)

## Probabilistic nonadaptive

In the linear $(k=p n)$ regime, we need

$$
T=n
$$

tests to succeed, so individual testing is optimal. (Aldridge, 2018)

## Probabilistic nonadaptive

## Idea of the proof:

Supposed an item is "hidden": every test that item is in contains a(nother) defective item.

We can't be sure whether the item is defective or nondefective.

## Probabilistic nonadaptive

## Idea of the proof:

Supposed an item is "hidden": every test that item is in contains a(nother) defective item.

We can't be sure whether the item is defective or nondefective.

In the very sparse or sparse regimes, we're safe to guess it's nondefective.

## Probabilistic nonadaptive

## Idea of the proof:

Supposed an item is "hidden": every test that item is in contains a(nother) defective item.

We can't be sure whether the item is defective or nondefective.

In the very sparse or sparse regimes, we're safe to guess it's nondefective.

But in the linear regime, we might guess wrongly.

# Probabilistic nonadaptive 

## Idea of the proof:

$$
\text { If } T<n \text {, }
$$

then individual tests are wasted, as they reduce the "tests per item" available.

So we can remove individual (or empty) tests, and assume all tests have weight at least $w_{t}=2$.

# Probabilistic nonadaptive 

## Idea of the proof:

The probability item i is hidden in test t is $\mathbb{P}(i$ hidden in $t)=1-q^{w_{t}-1}$

The probability item i is hidden over all is

$$
\mathbb{P}(i \text { hidden })=\mathbb{P}\left(\bigcup_{t \ni i}\{i \text { hidden in } t\}\right)
$$

$$
\geq \prod_{t \ni i} \mathbb{P}(i \text { hidden in } t)
$$

$$
=\prod_{t \ni i}\left(1-q^{w_{t}-1}\right)
$$

# Probabilistic nonadaptive 

## Idea of the proof:

The probability item i is hidden in test t is $\mathbb{P}(i$ hidden in $t)=1-q^{w_{t}-1}$

The probability item i is hidden over all is

$$
\mathbb{P}(i \text { hidden })=\mathbb{P}\left(\bigcup_{t \ni i}\{i \text { hidden in } t\}\right)
$$

$$
\begin{aligned}
& \geq \prod_{t \ni i} \mathbb{P}(i \text { hidden } \mathrm{i} \\
& =\prod_{t \ni i}\left(1-q^{w_{t}-1}\right)
\end{aligned}
$$

# Probabilistic nonadaptive 

## Idea of the proof:

The probability item i is hidden in test t is $\mathbb{P}(i$ hidden in $t)=1-q^{w_{t}-1}$

The probability item i is hidden over all is

$$
\mathbb{P}(i \text { hidden })=\mathbb{P}\left(\bigcup_{t \ni i}\{i \text { hidden in } t\}\right)
$$

$$
\begin{aligned}
& \geq \prod_{t \ni i} \mathbb{P}(i \text { hidden } \mathrm{ir} \\
& =\prod_{t \ni i}\left(1-w_{t}-1\right)
\end{aligned}
$$

# Probabilistic nonadaptive 

## Idea of the proof:

Check that the probability an item is hidden
averaged over the item $i$
is bounded away from 0 .

Then there's some item
with positive probability of being hidden.

Then there's a positive probability we guess wrongly whether or not it's defective.

## Probabilistic nonadaptive

## In the linear $(k=p n)$ regime, with

$$
T<n
$$

the probability of success is bounded away from 1... (Aldridge, 2018)
...and in fact tends to 0.
(Heng-Scarlett, 2020)

# Nonadaptive inference in the linear regime 

## Naïve algorithms can be optimal.

This is because we can't just assume an input is non-active if we lack evidence.

# Probabilistic nonadaptive 

This doesn't mean that nonadaptive group testing ideas are not useful in the linear regime.

We can find many defective and nondefective items in fewer than n tests
(just not all of them)
(Heng-Scarlett, 2020)

$$
\begin{gathered}
5 \\
\ln \text { closing }_{\ldots} . .
\end{gathered}
$$

# Things I didn't talk about 

Group testing with noise
where the test results are sometimes wrong

# Group testing with two (or more) stages between adaptive and nonadaptive 

Quantitative group testing:
We have a (possibly imperfect) measure of how many defective items are in the test

M Aldridge, O Johnson and J Scarlett Group Testing: An Information Theory Perspective Foundations and Trends in Communications and Information Theory, 2019

## Preprint:

arXiv:1902.06002


## Conclusions

Consider if the linear regime might be important for your inference problems.

Naïve sparsity-unaware algorithms (like individual testing) can be optimal.

Order-optimality is good, but look out for constants too.
"Error terms" often need more care.

