Sampling symmetric Gibbs distributions on sparse random graphs with contiguity

Charis Efthymiou University of Warwick

Workshop on Inference Problems
Goethe University of Frankfurt, 02/09/2020

Gibbs distribution

Gibbs distribution

- spin configurations on the vertices of a graph

Gibbs distribution

- spin configurations on the vertices of a graph
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and set of spins \mathcal{S}

Gibbs distribution

- spin configurations on the vertices of a graph
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and set of spins \mathcal{S}
- configuration space \mathcal{S}^{V}

Gibbs distribution

- spin configurations on the vertices of a graph
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and set of spins \mathcal{S}
- configuration space \mathcal{S}^{V}
- for each configuration σ specify weight (σ)

Gibbs distribution

- spin configurations on the vertices of a graph
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and set of spins \mathcal{S}
- configuration space \mathcal{S}^{V}
- for each configuration σ specify weight (σ)
- configuration σ is assigned probability measure

$$
\mu(\sigma) \propto \text { weight }(\sigma)
$$

Example

Example

Potts model

Example

Potts model

- $G=(V, E), \mathcal{S}=\{1,2, \ldots, q\}$ and $\beta \in \mathbb{R} \cup\{ \pm \infty\}$

Example

Potts model

- $G=(V, E), \mathcal{S}=\{1,2, \ldots, q\}$ and $\beta \in \mathbb{R} \cup\{ \pm \infty\}$
- for each $\sigma \in \mathcal{S}^{V}$ we have (σ is a q-colouring)

$$
\text { weight }(\sigma)=\exp (\beta \times \# \text { monochromatic-edges })
$$

Example

Potts model

- $G=(V, E), \mathcal{S}=\{1,2, \ldots, q\}$ and $\beta \in \mathbb{R} \cup\{ \pm \infty\}$
- for each $\sigma \in \mathcal{S}^{V}$ we have (σ is a q-colouring)

$$
\text { weight }(\sigma)=\exp (\beta \times \# \text { monochromatic-edges })
$$

- for $\beta<0$ penalises monochromatic edges - antiferromagnetic

Example

Potts model

- $G=(V, E), \mathcal{S}=\{1,2, \ldots, q\}$ and $\beta \in \mathbb{R} \cup\{ \pm \infty\}$
- for each $\sigma \in \mathcal{S}^{V}$ we have (σ is a q-colouring)

$$
\text { weight }(\sigma)=\exp (\beta \times \# \text { monochromatic-edges })
$$

- for $\beta<0$ penalises monochromatic edges - antiferromagnetic
- for $\beta>0$ favours monochromatic edges - ferromagnetic

Example

Potts model

- $G=(V, E), \mathcal{S}=\{1,2, \ldots, q\}$ and $\beta \in \mathbb{R} \cup\{ \pm \infty\}$
- for each $\sigma \in \mathcal{S}^{V}$ we have (σ is a q-colouring)

$$
\text { weight }(\sigma)=\exp (\beta \times \# \text { monochromatic-edges })
$$

- for $\beta<0$ penalises monochromatic edges - antiferromagnetic
- for $\beta>0$ favours monochromatic edges - ferromagnetic

Remarks

- for $q=2$ we have the Ising model

Example

Potts model

- $G=(V, E), \mathcal{S}=\{1,2, \ldots, q\}$ and $\beta \in \mathbb{R} \cup\{ \pm \infty\}$
- for each $\sigma \in \mathcal{S}^{V}$ we have (σ is a q-colouring)

$$
\text { weight }(\sigma)=\exp (\beta \times \# \text { monochromatic-edges })
$$

- for $\beta<0$ penalises monochromatic edges - antiferromagnetic
- for $\beta>0$ favours monochromatic edges - ferromagnetic

Remarks

- for $q=2$ we have the Ising model
- for $\beta=-\infty$ we have the Colouring model

Efficient sampling

Efficient sampling

For the Gibbs distribution μ on $G=(V, E)$, generate efficiently the configuration $\boldsymbol{\sigma} \sim \mu$

Efficient sampling

For the Gibbs distribution μ on $G=(V, E)$, generate efficiently the configuration $\boldsymbol{\sigma} \sim \mu$

- worst-case the problem is computationally hard

Efficient sampling

For the Gibbs distribution μ on $G=(V, E)$, generate efficiently the configuration $\boldsymbol{\sigma} \sim \mu$

- worst-case the problem is computationally hard
- generate efficiently $\boldsymbol{\sigma}$ which is distributed "close" to μ

Efficient sampling

For the Gibbs distribution μ on $G=(V, E)$, generate efficiently the configuration $\sigma \sim \mu$

- worst-case the problem is computationally hard
- generate efficiently $\boldsymbol{\sigma}$ which is distributed "close" to μ
- focus on the range of parameters of μ in which we can get "good" approximate samples

The case of $G(n, m)$

The case of $G(n, m)$

The sparse random graph

The case of $G(n, m)$

The sparse random graph
$G(n, m)$ is the random graph on n vertices and m edges

The case of $G(n, m)$

The sparse random graph
$\boldsymbol{G}(n, m)$ is the random graph on n vertices and m edges

- expected degree d, i.e. $m=\frac{d n}{2}$

The case of $G(n, m)$

The sparse random graph
$\boldsymbol{G}(n, m)$ is the random graph on n vertices and m edges

- expected degree d, i.e. $m=\frac{d n}{2}$
- we focus on fixed $d>0$ and $n \rightarrow \infty$

The case of $G(n, m)$

The sparse random graph
$G(n, m)$ is the random graph on n vertices and m edges

- expected degree d, i.e. $m=\frac{d n}{2}$
- we focus on fixed $d>0$ and $n \rightarrow \infty$
- . . . that is $m=\Theta(n)$

The case of $G(n, m)$

The sparse random graph
$G(n, m)$ is the random graph on n vertices and m edges

- expected degree d, i.e. $m=\frac{d n}{2}$
- we focus on fixed $d>0$ and $n \rightarrow \infty$
- . . . that is $m=\Theta(n)$

Sampling Problem on $G(n, m)$

The case of $G(n, m)$

The sparse random graph
$G(n, m)$ is the random graph on n vertices and m edges

- expected degree d, i.e. $m=\frac{d n}{2}$
- we focus on fixed $d>0$ and $n \rightarrow \infty$
- . . . that is $m=\Theta(n)$

Sampling Problem on $G(n, m)$

- focus on approximate sampling

The case of $G(n, m)$

The sparse random graph
$G(n, m)$ is the random graph on n vertices and m edges

- expected degree d, i.e. $m=\frac{d n}{2}$
- we focus on fixed $d>0$ and $n \rightarrow \infty$
- . . . that is $m=\Theta(n)$

Sampling Problem on $G(n, m)$

- focus on approximate sampling
- use concepts from physics and related problems on random graphs to get better sampling algorithms

Popular approaches to sampling problem

Popular approaches to sampling problem

- Markov Chain Monte Carlo method

Popular approaches to sampling problem

- Markov Chain Monte Carlo method
- Message Passing Algorithms

Popular approaches to sampling problem

- Markov Chain Monte Carlo method
- Message Passing Algorithms
- Weitz's Algorithm

Popular approaches to sampling problem

- Markov Chain Monte Carlo method
- Message Passing Algorithms
- Weitz's Algorithm
- Barvinok's approach

Popular approaches to sampling problem

- Markov Chain Monte Carlo method
- Message Passing Algorithms
- Weitz's Algorithm
- Barvinok's approach
- See next talk for another...

Popular approaches to sampling problem

- Markov Chain Monte Carlo method
- Message Passing Algorithms
- Weitz's Algorithm
- Barvinok's approach
- See next talk for another...

Our approach has nothing to do with all the above...

Example from the past

Example from the past

Example with the Colouring Model

Example from the past

Example with the Colouring Model

- from (Efthymiou 2012).

Observation

Observation

G

G^{\prime}

Observation

A random colouring of G can be seen as a random colouring of the simpler G^{\prime} conditional that v, u receive different colours.

Observation

G

G^{\prime}

A random colouring of G can be seen as a random colouring of the simpler G^{\prime} conditional that v, u receive different colours.

Observation

A random colouring of G can be seen as a random colouring of the simpler G^{\prime} conditional that v, u receive different colours.

Suppose that

Update

Input: random q-colouring of G and the vertices v, u.
Output: random q-colouring of G, conditional u, v are assigned different colours.

Suppose that

Update

Input: random q-colouring of G and the vertices v, u.
Output: random q-colouring of G, conditional u, v are assigned different colours.

Suppose that

Update

Input: random q-colouring of G and the vertices v, u.
Output: random q-colouring of G, conditional u, v are assigned different colours.

Suppose that

Update

Input: random q-colouring of G and the vertices v, u.
Output: random q-colouring of G, conditional u, v are assigned different colours.

Be careful...
We can not change the colours of the vertices arbitrarily.

Update for sampling ...

Update for sampling ...

The sampling algorithm

Update for sampling ...

The sampling algorithm
Input: $G=(V, E) q>0$

Update for sampling ...

The sampling algorithm
Input: $G=(V, E) q>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$

Update for sampling ...

The sampling algorithm
Input: $G=(V, E) q>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$
-get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$

Update for sampling ...

The sampling algorithm
Input: $G=(V, E) q>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$
-get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$ $-G_{0}$ is empty

Update for sampling ...

The sampling algorithm
Input: $G=(V, E) q>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$
-get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$
$-G_{0}$ is empty
Generate σ_{0} a random coloring of G_{0}

Update for sampling ...

The sampling algorithm
Input: $G=(V, E) q>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$

- get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$
$-G_{0}$ is empty
Generate σ_{0} a random coloring of G_{0}
Iteratively: Use $\boldsymbol{\sigma}_{i}$ the colouring of G_{i} and Update to get $\boldsymbol{\sigma}_{i+1}$

Update for sampling ...

The sampling algorithm
Input: $G=(V, E) q>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$

- get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$
$-G_{0}$ is empty
Generate σ_{0} a random coloring of G_{0}
Iteratively: Use $\boldsymbol{\sigma}_{i}$ the colouring of G_{i} and Update to get $\boldsymbol{\sigma}_{i+1}$

Update for sampling ...

The sampling algorithm
Input: $G=(V, E) q>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$

- get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$
$-G_{0}$ is empty
Generate σ_{0} a random coloring of G_{0}
Iteratively: Use $\boldsymbol{\sigma}_{\boldsymbol{i}}$ the colouring of G_{i} and Update to get $\boldsymbol{\sigma}_{i+1}$

UPDATE

Update for sampling ...

The sampling algorithm
Input: $G=(V, E) q>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$
-get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$
$-G_{0}$ is empty
Generate σ_{0} a random coloring of G_{0}
Iteratively: Use $\boldsymbol{\sigma}_{i}$ the colouring of G_{i} and Update to get $\boldsymbol{\sigma}_{i+1}$

UPDATE

Update for sampling ...

The sampling algorithm
Input: $G=(V, E) q>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$
-get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$
$-G_{0}$ is empty
Generate σ_{0} a random coloring of G_{0}
Iteratively: Use $\boldsymbol{\sigma}_{i}$ the colouring of G_{i} and Update to get $\boldsymbol{\sigma}_{i+1}$

UPDATE

Update for sampling . . .

The sampling algorithm
Input: $G=(V, E) q>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$
-get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$
$-G_{0}$ is empty
Generate σ_{0} a random coloring of G_{0}
Iteratively: Use $\boldsymbol{\sigma}_{i}$ the colouring of G_{i} and Update to get σ_{i+1}
Output: σ_{r}, the colouring of G_{r}

UPDATE

How does Update look like for $G(n, m)$?

How does Update look like for $G(n, m)$?

How does Update look like for $G(n, m)$?

How does Update look like for $G(n, m)$?

... why approximate sampling?
... why approximate sampling?

... why approximate sampling?

... why approximate sampling?

... why approximate sampling?

Failure
When both v_{i} and u_{i} change colour Update fails

... why approximate sampling?

Failure Vs Approximation
Because of the failures Update is an approximation algorithm

... why approximate sampling?

Failure Vs Approximation
Because of the failures Update is an approximation algorithm

- the output is approximately Gibbs distributed

... why approximate sampling?

Error for Update
\approx the probability of failure

... why approximate sampling?

Approximation Sampler
The sampling algorithm that uses Update is approximation too

... why approximate sampling?

Approximation Sampler
The sampling algorithm that uses Update is approximation too output error \approx there is a failure is some iteration

Some intuition for $\boldsymbol{G}(n, m)$

Some intuition for $\boldsymbol{G}(n, m)$

- for certain values of q the approach yields good approximation

Some intuition for $\boldsymbol{G}(n, m)$

- for certain values of q the approach yields good approximation
- almost all pairs v_{i}, u_{i} are far away

Some intuition for $\boldsymbol{G}(n, m)$

- for certain values of q the approach yields good approximation
- almost all pairs v_{i}, u_{i} are far away
- failure implies that we have an extensive chain

Some intuition for $\boldsymbol{G}(n, m)$

- for certain values of q the approach yields good approximation
- almost all pairs v_{i}, u_{i} are far away
- failure implies that we have an extensive chain
- care should be taken for v_{i}, u_{i} are at short distance

Some intuition for $\boldsymbol{G}(n, m)$

- for certain values of q the approach yields good approximation
- almost all pairs v_{i}, u_{i} are far away
- failure implies that we have an extensive chain
- care should be taken for v_{i}, u_{i} are at short distance
- the update for such pairs is different (didn't show that)

Performance of Sampler

Theorem (Efthymiou 2016)
For $\epsilon>0$, for large $d>0$ and $q \geq(1+\epsilon) d$ we have the following: With probability $1-o(1)$ over the instances of $G(n, m)$ the algorithm generates a q-colouring of G which is distributed within total variation distance $n^{-\Omega(1)}$ from the q-colouring model.

Gibbs Tree Uniqueness

Gibbs Tree Uniqueness

Remark
$q>d \Rightarrow$ Gibbs uniqueness for the colourings on the d-ary tree

Gibbs Tree Uniqueness

Remark
$q>d \Rightarrow$ Gibbs uniqueness for the colourings on the d-ary tree

Gibbs Tree Uniqueness

Remark
$q>d \Rightarrow$ Gibbs uniqueness for the colourings on the d-ary tree

Gibbs Tree Uniqueness

Remark
$q>d \Rightarrow$ Gibbs uniqueness for the colourings on the d-ary tree

Gibbs Tree Uniqueness

Remark
$q>d \Rightarrow$ Gibbs uniqueness for the colourings on the d-ary tree

Gibbs Tree Uniqueness

Remark
$q>d \Rightarrow$ Gibbs uniqueness for the colourings on the d-ary tree

Gibbs Tree Uniqueness

Remark

$q>d \Rightarrow$ Gibbs uniqueness for the colourings on the d-ary tree

$$
\left\|\mu(\cdot)-\mu\left(\cdot \mid \sigma\left(L_{h}\right)\right)\right\|_{\{r\}}
$$

Gibbs Tree Uniqueness

Remark

$q>d \Rightarrow$ Gibbs uniqueness for the colourings on the d-ary tree

Gibbs Tree Uniqueness

Remark

$q>d \Rightarrow$ Gibbs uniqueness for the colourings on the d-ary tree

Gibbs Tree Uniqueness

Remark

$q>d \Rightarrow$ Gibbs uniqueness for the colourings on the d-ary tree

Gibbs Uniqueness $\Longleftrightarrow \lim _{h \rightarrow \infty}\left\|\mu(\cdot)-\mu\left(\cdot \mid \sigma\left(L_{h}\right)\right)\right\|_{\{r\}}=0$

Beyond colourings

Beyond colourings

similar approach other distributions

Beyond colourings

similar approach other distributions

- add edges, use update, failure etc ...

Beyond colourings

similar approach other distributions

- add edges, use update, failure etc ...
- general update independent of the distribution

Beyond colourings

similar approach other distributions

- add edges, use update, failure etc ...
- general update independent of the distribution
- the previous approach is tailored to colourings

Beyond colourings

similar approach other distributions

- add edges, use update, failure etc ...
- general update independent of the distribution
- the previous approach is tailored to colourings
- already fails for the interesting cases of Potts model

Beyond colourings

similar approach other distributions

- add edges, use update, failure etc ...
- general update independent of the distribution
- the previous approach is tailored to colourings
- already fails for the interesting cases of Potts model
- (Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang '20)

Beyond colourings

similar approach other distributions

- add edges, use update, failure etc ...
- general update independent of the distribution
- the previous approach is tailored to colourings
- already fails for the interesting cases of Potts model
- (Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang '20)
- use here the sampler for the random cluster model

Beyond colourings

similar approach other distributions

- add edges, use update, failure etc ...
- general update independent of the distribution
- the previous approach is tailored to colourings
- already fails for the interesting cases of Potts model
- (Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang '20)
- use here the sampler for the random cluster model
- special to distribution, too

Symmetric Gibbs distributions

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes ...

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes ...

- Ising model

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes ...

- Ising model
- Potts model

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes ...

- Ising model
- Potts model
- including colourings

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes ...

- Ising model
- Potts model
- including colourings
- k not-all-equal SAT

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes ...

- Ising model
- Potts model
- including colourings
- k not-all-equal $S A T$
- k-spin model for $k \geq 2$ even integer

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes ...

- Ising model
- Potts model
- including colourings
- k not-all-equal SAT
- k-spin model for $k \geq 2$ even integer
- spin-glass distribution

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes...

- Ising model
- Potts model
- including colourings
- k not-all-equal $S A T$
- k-spin model for $k \geq 2$ even integer
- spin-glass distribution

Remark
The above are for both graphs and hypergraphs

Range of parameters

Range of parameters

The aim is the whole tree uniqueness region

Range of parameters

The aim is the whole tree uniqueness region

- for many cases we only have conjectures about the region

Range of parameters

The aim is the whole tree uniqueness region

- for many cases we only have conjectures about the region
- can't use the convergence of distributional recursions

Range of parameters

The aim is the whole tree uniqueness region

- for many cases we only have conjectures about the region
- can't use the convergence of distributional recursions
- circumvent the above by exploiting contiguity

Range of parameters

The aim is the whole tree uniqueness region

- for many cases we only have conjectures about the region
- can't use the convergence of distributional recursions
- circumvent the above by exploiting contiguity
- from network inference algorithms e.g. for the Stochastic Block Model

Approach

Approach

Setting ...

Approach

Setting ...

- symmetric Gibbs distribution
- ... e.g. antiferromagnetic Ising or Potts

Approach

Setting ...

- symmetric Gibbs distribution
- ... e.g. antiferromagnetic Ising or Potts
- two graphs G and G^{\prime} such that $G^{\prime}=G \cup\{e\}$ for some edge e

Approach

Setting ...

- symmetric Gibbs distribution
- ... e.g. antiferromagnetic Ising or Potts
- two graphs G and G^{\prime} such that $G^{\prime}=G \cup\{e\}$ for some edge e
- ... assume that both are of high girth

Approach

Setting ...

- symmetric Gibbs distribution
- ... e.g. antiferromagnetic Ising or Potts
- two graphs G and G^{\prime} such that $G^{\prime}=G \cup\{e\}$ for some edge e
- ... assume that both are of high girth
- Gibbs distributions μ and μ^{\prime} on G and G^{\prime}, resp.

Approach

Setting ...

- symmetric Gibbs distribution
- ... e.g. antiferromagnetic Ising or Potts
- two graphs G and G^{\prime} such that $G^{\prime}=G \cup\{e\}$ for some edge e
- ... assume that both are of high girth
- Gibbs distributions μ and μ^{\prime} on G and G^{\prime}, resp.
- configuration σ distributed as in μ

Approach

Setting ...

- symmetric Gibbs distribution
- ... e.g. antiferromagnetic Ising or Potts
- two graphs G and G^{\prime} such that $G^{\prime}=G \cup\{e\}$ for some edge e
- ... assume that both are of high girth
- Gibbs distributions μ and μ^{\prime} on G and G^{\prime}, resp.
- configuration σ distributed as in μ

Objective

Generate efficiently $\boldsymbol{\tau}$ distributed close to μ^{\prime}

Ideal Solution

Ideal Solution

G

Ideal Solution

Ideal Solution

vertex w is a disagreement with spins \{blue, yellow\}

Ideal Solution

iteratively visit the vertices of G^{\prime} one by one and decide their configuration at τ

Ideal Solution

look for z 's, neighbours of w with $\sigma(z) \in\{$ blue, yellow $\}$

Ideal Solution

look for z 's, neighbours of w with $\sigma(z) \in\{$ blue, yellow $\}$

Ideal Solution

pick x_{2} and decide $\tau\left(x_{2}\right)$ such that $\tau\left(x_{2}\right) \in\{$ blue, yellow $\}$

Ideal Solution

we want to avoid a disagreement at x_{2}

Ideal Solution

the probability of disagreement is minimised by coupling maximally the marginals of μ and μ^{\prime} on x_{2}

Ideal Solution

maximal coupling

$$
\operatorname{Pr}\left[\tau\left(x_{2}\right)=\text { blue }\right]=\max \left\{0,1-\frac{\mu_{x_{2}}^{\prime}\left(\sigma\left(x_{2}\right) \mid \tau(\{u, w\})\right)}{\mu_{x_{2}}\left(\sigma\left(x_{2}\right) \mid \sigma(\{u, w\})\right)}\right\} .
$$

Ideal Solution

maximal coupling

$$
\operatorname{Pr}\left[\tau\left(x_{2}\right)=\text { blue }\right]=\max \left\{0,1-\frac{\mu_{x_{2}}^{\prime}\left(\sigma\left(x_{2}\right) \mid \tau(\{u, w\})\right)}{\mu_{x_{2}}\left(\sigma\left(x_{2}\right) \mid \sigma(\{u, w\})\right)}\right\} .
$$

Ideal Solution

the disagreement set now is $\left\{w, x_{2}\right\}$

Ideal Solution

look for vertices z next to the disagreements such that $\sigma(z) \in\{$ blue, yellow $\}$

Ideal Solution

choose x_{3} and repeat as before...

Ideal Solution

$$
\operatorname{Pr}\left[\tau\left(x_{3}\right)=\text { yellow }\right]=\max \left\{0,1-\frac{\mu_{x_{3}}^{\prime}\left(\sigma\left(x_{3}\right) \mid \tau\left(\left\{u, w, x_{2}\right\}\right)\right)}{\mu_{x_{3}}\left(\sigma\left(x_{3}\right) \mid \sigma\left(\left\{u, w, x_{2}\right\}\right)\right)}\right\} .
$$

Ideal Solution

Ideal Solution

repeat in the same way for the rest of the vertices

Ideal Solution

repeat in the same way for the rest of the vertices

Ideal Solution

repeat in the same way for the rest of the vertices

Ideal Solution

repeat in the same way for the rest of the vertices

Ideal Solution

repeat in the same way for the rest of the vertices

Ideal Solution

repeat in the same way for the rest of the vertices

Ideal Solution

repeat in the same way for the rest of the vertices

Ideal Solution

disagreement cannot propagate any more

Ideal Solution

the remaining vertices keep their assignments

Ideal Solution

the remaining vertices keep the initial assignments.

Ideal Solution

the approach generates a perfect sample from μ^{\prime}

Ideal Solution

The catch ...

$$
\operatorname{Pr}\left[\tau\left(x_{3}\right)=\text { yellow }\right]=\max \left\{0,1-\frac{\mu_{3_{3}}^{\prime}\left(\sigma\left(x_{3}\right) \mid \tau\left(\left\{u, w, x_{2}\right\}\right)\right)}{\mu_{x_{3}}\left(\sigma\left(x_{3}\right) \mid \sigma\left(\left\{u, w, x_{2}\right\}\right)\right)}\right\} .
$$

Ideal Solution

The catch ...
we need to compute $\mu_{x_{3}}^{\prime}\left(\sigma\left(x_{3}\right) \mid \sigma\left(\left\{u, w, x_{2}\right\}\right)\right)$ efficiently

Ideal Solution

The idea ...
replace the Gibbs marginals with "good" approximations

Some Intuition

Some Intuition

G^{\prime}

Desideratum ...

compute efficiently the Gibbs marginal $\mu_{x_{3}}^{\prime}\left(\sigma\left(x_{3}\right) \mid \sigma\left(\left\{u, w, x_{2}\right\}\right)\right)$

Some Intuition

G^{\prime}

Remark

the marginal $\mu_{x_{3}}^{\prime}\left(\sigma\left(x_{3}\right) \mid \sigma\left(\left\{u, w, x_{2}\right\}\right)\right)$ is a "complicated object"

Some Intuition

G^{\prime}
Observation ...
influences form vertices with configuration make the Gibbs marginal at x_{3} complicated

Some Intuition

G^{\prime}
influence from the configuration at x_{2}

Some Intuition

G^{\prime}
influence from the configuration at w

Some Intuition

G^{\prime}
influence from the configuration at w

Some Intuition

G^{\prime}
influence from the configuration at w

Some Intuition

G^{\prime}
influence from the configuration at w

Some Intuition

G^{\prime}
influence from the configuration at w

Some Intuition

G^{\prime}
influence from the configuration at w

Some Intuition

G^{\prime}
influence from the configuration at u

Some Intuition

G^{\prime}
influence from the configuration at u

Some Intuition

G^{\prime}
influence from the configuration at u

Some Intuition

G^{\prime}
influence from the configuration at u

Some Intuition

G^{\prime}
influence from the configuration at u

Some Intuition

G^{\prime}
influence from the configuration at u

Some Intuition

G^{\prime}
influence from the configuration at u

Some Intuition

G^{\prime}
influence from the configuration at u

Some Intuition

G^{\prime}
However ...
in most cases all but one vertex are far away (girth)

Some Intuition

$$
G^{\prime}
$$

Choosing the appropriate parameters ...
the influences from distance are very weak \& in most cases only one vertex influences the marginal

Some Intuition

G^{\prime}
Compute marginal but ...
ignore the influence on x_{3} from u and w

Some Intuition

$$
G^{\prime}
$$

Effectively

use the marginal of x_{3} on the graph within the dashed curve

Some Intuition

$$
G^{\prime}
$$

Remarks

the "simplified" marginal on x_{3} is trivial \& is computed fast

Some Intuition

G^{\prime}

Remarks

our marginal is also called broadcasting probability

To sum up ．．．

```
4ロ>4句>4 三
```

To sum up ...

G

To sum up ...

To sum up ...

G

G^{\prime}

To sum up ...

To sum up ...

G

G^{\prime}

To sum up ...

To sum up ...

G

G^{\prime}

To sum up ...

(G, σ)

G^{\prime}

To sum up ...

(G, σ)

G^{\prime}

To sum up...

vertex w is a disagreement with spins $\mathcal{D}=\{$ blue, yellow $\}$

To sum up ...

look for z, neighbour of w with $\sigma(z) \in\{b l u e$, yellow $\}$

To sum up ...

pick x_{2} and decide $\tau\left(x_{2}\right)$ such that $\tau\left(x_{2}\right) \in\{$ blue, yellow $\}$

To sum up ...

maximal coupling of broadcasting probabilities

$$
\operatorname{Pr}\left[\tau\left(x_{2}\right)=\text { blue }\right]=\max \left\{0,1-\frac{\mathfrak{m}_{x_{2}}\left(\sigma\left(x_{2}\right) \mid \tau(w)\right)}{\mathfrak{m}_{x_{2}}\left(\sigma\left(x_{2}\right) \mid \sigma(w)\right)}\right\}
$$

To sum up ...

maximal coupling of broadcasting probabilities

$$
\operatorname{Pr}\left[\tau\left(x_{2}\right)=\text { blue }\right]=\max \left\{0,1-\frac{\mathfrak{m}_{x_{2}}\left(\sigma\left(x_{2}\right) \mid \tau(w)\right)}{\mathfrak{m}_{x_{2}}\left(\sigma\left(x_{2}\right) \mid \sigma(w)\right)}\right\}
$$

To sum up ...

maximal coupling of broadcasting probabilities

$$
\operatorname{Pr}\left[\tau\left(x_{2}\right)=\mathrm{blue}\right]=\max \left\{0,1-\frac{\mathfrak{m}_{x_{2}}\left(\sigma\left(x_{2}\right) \mid \tau(w)\right)}{\mathfrak{m}_{x_{2}}\left(\sigma\left(x_{2}\right) \mid \sigma(w)\right)}\right\}
$$

To sum up ...

the disagreement set is $\left\{w, x_{2}\right\}$

To sum up ...

look for vertices z next to the disagreements such that $\sigma(z) \in\{$ blue, yellow $\}$

To sum up ...

choose x_{3} and repeat as before...

To sum up ...

$$
\operatorname{Pr}\left[\tau\left(x_{3}\right)=\text { yellow }\right]=\max \left\{0,1-\frac{\mathrm{m}_{x_{3}}\left(\sigma\left(x_{3}\right) \mid \tau\left(x_{2}\right)\right)}{\left.\mathrm{m}_{x_{3}} \sigma\left(x_{3}\right) \mid \sigma\left(x_{2}\right)\right)}\right\} .
$$

To sum up ...

(G, σ)

G^{\prime}

To sum up ...

repeat in the same way for the rest of the vertices

To sum up ...

repeat in the same way for the rest of the vertices

To sum up ...

repeat in the same way for the rest of the vertices

To sum up ...

repeat in the same way for the rest of the vertices

To sum up ...

repeat in the same way for the rest of the vertices

To sum up ...

repeat in the same way for the rest of the vertices

To sum up ...

repeat in the same way for the rest of the vertices

To sum up ...

the disagreements cannot propagate any more

To sum up ...

the remaining vertices keep the same assignment

To sum up ...

the remaining vertices keep their assignments.

To sum up ...

The catch ...
the process is not allowed to "self interact"

To sum up ...

Self interaction

- update neighbours of u
- the vertices whose assignment change induce a cycle

To sum up ...

Failure
failure is when the process self-interacts.

Example of failure

Example of failure

Example of failure

Example of failure

Failure Vs Approximation

Failure Vs Approximation

G

G

Failure Vs Approximation

G
Accuracy
we have Update on input $\boldsymbol{\sigma}$ distributed as in $\mu(\cdot \mid \eta)$

- ν is the distribution of the output of Update
- compare ν with $\mu(\cdot \mid \xi)$

Failure Vs Approximation

Accuracy

$$
\|\nu-\mu(\cdot \mid \xi)\|_{t v}=? ? ?
$$

Failure Vs Approximation

we handle the update as a (probabilistic) map

Failure Vs Approximation

For configurations σ, τ
$\mathrm{P}_{\eta, \xi}(\sigma, \tau):=$ Probability that update generates τ given input σ

Failure Vs Approximation

Reverse mapping
we can define the reverse mapping (right to left)

Failure Vs Approximation

For configurations σ, τ
$\mathrm{P}_{\xi, \eta}(\tau, \sigma):=$ Probability that reverse update generates σ on input τ

Failure Vs Approximation

G

G

Transition probabilities
$\mathrm{P}_{\eta, \xi}(\cdot, \cdot) \Rightarrow$ for the mapping from left to right $\mathrm{P}_{\xi, \eta}(\cdot, \cdot) \Rightarrow$ for the mapping from right to left

Failure Vs Approximation

G
G
Detailed Balance Property
For any σ, τ we have

$$
\mu(\sigma) \mathrm{P}_{\eta, \xi}(\sigma, \tau)=\mu(\tau) \mathrm{P}_{\xi, \eta}(\tau, \sigma)
$$

Failure Vs Approximation

G
G
Using detailed balance we get...

$$
\|\nu-\mu(\cdot \mid \xi)\| \approx \frac{1}{2}(\operatorname{Pr}[\text { Update Fails }]+\operatorname{Pr}[\text { Reverse Fails }])
$$

Configuration for u and w

Configuration for u and w

Configuration for u and w

Configuration for u and w

Remark
The choice of $\tau(u)$ and $\tau(w)$ in G^{\prime} is oblivious to σ

Configuration for u and w

Configuration for u and w

(G, σ)
(1) (1)

G^{\prime}

Configuration for u and w

Sample from the distribution on the graph within the dashed lines

Configuration for u and w

Remarks

- introduces an extra error
- initial disagreement maybe ≥ 1

The iterative algorithm

The algorithm

The iterative algorithm

The algorithm
Input: $G=(V, E) k>0$

The iterative algorithm

The algorithm
Input: $G=(V, E) k>0$

$$
G_{0}, G_{1}, \ldots, G_{r}=G
$$

The iterative algorithm

The algorithm
Input: $G=(V, E) k>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$

- get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$

The iterative algorithm

The algorithm
Input: $G=(V, E) k>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$

- get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$
$-G_{0}$ is empty

The iterative algorithm

The algorithm
Input: $G=(V, E) k>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$

- get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$
$-G_{0}$ is empty
Generate σ_{0} a random coloring of G_{0}

The iterative algorithm

The algorithm
Input: $G=(V, E) k>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$
-get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$
$-G_{0}$ is empty
Generate σ_{0} a random coloring of G_{0}
Iteratively: Use $\boldsymbol{\sigma}_{i}$ the colouring of G_{i} and Update to get $\boldsymbol{\sigma}_{i+1}$

The iterative algorithm

The algorithm
Input: $G=(V, E) k>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$

- get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$
$-G_{0}$ is empty
Generate σ_{0} a random coloring of G_{0}
Iteratively: Use σ_{i} the colouring of G_{i} and Update to get σ_{i+1}
Output: σ_{r}, the colouring of G_{r}

The iterative algorithm

The algorithm
Input: $G=(V, E) k>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$

- get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$
$-G_{0}$ is empty
Generate σ_{0} a random coloring of G_{0}
Iteratively: Use $\boldsymbol{\sigma}_{i}$ the colouring of G_{i} and Update to get $\boldsymbol{\sigma}_{i+1}$
Output: σ_{r}, the colouring of G_{r}

The error for the algorithm \approx probability of failure at some iteration

The iterative algorithm

The algorithm
Input: $G=(V, E) k>0$
$G_{0}, G_{1}, \ldots, G_{r}=G$

- get G_{i} from G_{i+1} by deleting the random edge $\left\{v_{i}, u_{i}\right\}$
$-G_{0}$ is empty
Generate σ_{0} a random coloring of G_{0}
Iteratively: Use σ_{i} the colouring of G_{i} and Update to get σ_{i+1}
Output: σ_{r}, the colouring of G_{r}

The time complexity the time complexity is $O\left(|E|^{2}\right)$

- for each iteration we compute $O(|E|)$ broadcasting marginals
- we have $|E|$ iterations

From high girth to $G(n, m)$

From high girth to $\boldsymbol{G}(n, m)$

- we considered high girth graphs

From high girth to $\boldsymbol{G}(n, m)$

- we considered high girth graphs
- typical instances of $\boldsymbol{G}(n, m)$ are a bit different

From high girth to $G(n, m)$

- we considered high girth graphs
- typical instances of $G(n, m)$ are a bit different
- there are short cycles far apart from each other

From high girth to $G(n, m)$

- we considered high girth graphs
- typical instances of $G(n, m)$ are a bit different
- there are short cycles far apart from each other
- we won't discuss the challenges from the short cycles here ...

The parameters

The parameters

For which parameters of the Gibbs distribution on $G(n, m)$ do we get good approximations?

The parameters

For which parameters of the Gibbs distribution on $G(n, m)$ do we get good approximations?

- good approximation \Rightarrow error $n^{-\Omega(1)}$

The parameters

For which parameters of the Gibbs distribution on $G(n, m)$ do we get good approximations?

- good approximation \Rightarrow error $n^{-\Omega(1)}$
- Gibbs uniqueness condition

The parameters

For which parameters of the Gibbs distribution on $G(n, m)$ do we get good approximations?

- good approximation \Rightarrow error $n^{-\Omega(1)}$
- Gibbs uniqueness condition
- tools based on Contiguity

Analysis

Analysis

Setting
Consider $\boldsymbol{G}(n, m)$ and σ distributed as in μ. Consider Update that starts from vertex v with initial assignment $\tau(v) \neq \boldsymbol{\sigma}(v)$

Analysis

Setting
Consider $\boldsymbol{G}(n, m)$ and σ distributed as in μ. Consider Update that starts from vertex v with initial assignment $\tau(v) \neq \boldsymbol{\sigma}(v)$

Objective
The disagreements grow subcritically

Analysis

Setting
Consider $\boldsymbol{G}(n, m)$ and $\boldsymbol{\sigma}$ distributed as in μ. Consider Update that starts from vertex v with initial assignment $\tau(v) \neq \boldsymbol{\sigma}(v)$

Objective
The disagreements grow subcritically
The randomness ...

Analysis

Setting

Consider $\boldsymbol{G}(n, m)$ and $\boldsymbol{\sigma}$ distributed as in μ. Consider Update that starts from vertex v with initial assignment $\tau(v) \neq \boldsymbol{\sigma}(v)$

Objective
The disagreements grow subcritically
The randomness...

- the random graph $G(n, m)$

Analysis

Setting

Consider $\boldsymbol{G}(n, m)$ and $\boldsymbol{\sigma}$ distributed as in μ. Consider Update that starts from vertex v with initial assignment $\tau(v) \neq \boldsymbol{\sigma}(v)$

Objective
The disagreements grow subcritically
The randomness...

- the random graph $\boldsymbol{G}(n, m)$
- confinguration σ

Analysis

Setting

Consider $\boldsymbol{G}(n, m)$ and $\boldsymbol{\sigma}$ distributed as in μ. Consider Update that starts from vertex v with initial assignment $\tau(v) \neq \boldsymbol{\sigma}(v)$

Objective
The disagreements grow subcritically
The randomness...

- the random graph $G(n, m)$
- confinguration σ
- random choices of Update

Analysis Sketch

Analysis Sketch

consider a permutation of vertices s.t. $x_{0}=v$

Analysis Sketch

reveal the graph structure $G(n, m)$

Analysis Sketch

reveal the graph structure $G(n, m)$

Analysis Sketch

we care whether x_{0}, \ldots, x_{7} forms a path in $G(n, m)$

Analysis Sketch

we set initial disagreement at x_{0}

Analysis Sketch

we set initial disagreement at x_{0}

Analysis Sketch

the two configurations at x_{0} are from the input σ and he output $\boldsymbol{\tau}$ of Update

Analysis Sketch

focus is on the probability that the disagreement propagates over the path x_{0}, \ldots, x_{7}

Analysis Sketch

in steps, for x_{1}, x_{2}, \ldots, we reveal the configurations on the vertices in the path

Analysis Sketch

Disagreement probability
the probability that the disagreement propagates one step further

Analysis Sketch

Disagreement probability
the probability that the disagreement propagates one step further

Analysis Sketch

Disagreement probability
the probability that the disagreement propagates one step further

Analysis Sketch

Desideratum
at each step the disagreement probability $<1 / d$

Analysis Sketch

Remark I
this probability depends on μ and the random choice of Update

Analysis Sketch

Some magic
if Gibbs marginal at x_{3} was close to the broadcasting probability

Analysis Sketch

Some magic
if Gibbs marginal at x_{3} was close to the broadcasting probability
\Rightarrow in the (conjectured) uniqueness region we have the desideratum

Analysis Sketch

Some problems
if Gibbs marginal at x_{3} was close to the broadcasting probability
\Rightarrow in the (conjectured) uniqueness region we have the desideratum

Analysis Sketch

Contiguity to the rescue ...

The planted model

The planted model

Idea ...
Reconsider the order of randomness

The planted model

Uniform Model
(1) random graph $G(n, m)$
(2) randomness of σ
(3) choices of Update

The planted model

Uniform Model
(1) random graph $G(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model

The planted model

Uniform Model
(1) random graph $G(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model (1) generate σ^{*}

The planted model

Uniform Model
(1) random graph $\boldsymbol{G}(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}

The planted model

Uniform Model
(1) random graph $G(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update

The planted model

Uniform Model
(1) random graph $\boldsymbol{G}(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update

The planted model

Uniform Model
(1) random graph $G(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update
σ^{*} is a random q-partition of the vertex set, $\ldots q=|\mathcal{S}|$

The planted model

Uniform Model
(1) random graph $\boldsymbol{G}(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update
σ^{*} is a random q-partition of the vertex set, $\ldots q=|\mathcal{S}|$

- the distribution of σ^{*} is very simple

The planted model

Uniform Model
(1) random graph $G(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update

The planted model

Uniform Model
(1) random graph $G(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update
G^{*} is a weighted random graph on n vertices, m edges

The planted model

Uniform Model
(1) random graph $G(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update
G^{*} is a weighted random graph on n vertices, m edges

- the weights depends on Gibbs distribution
- G^{*} depends on σ^{*}

The planted model

Uniform Model
(1) random graph $G(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update

Planting Colourings

The planted model

Uniform Model
(1) random graph $G(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update

Planting Colourings

The planted model

Uniform Model
(1) random graph $G(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update

Planting Colourings

The planted model

Uniform Model
(1) random graph $G(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update

Also known . . .
in network inference they call it Stochastic Block Model

The planted model

Uniform Model
(1) random graph $\boldsymbol{G}(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update

The planted model

Uniform Model
(1) random graph $\boldsymbol{G}(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update

Update for Teacher-Student
the input of the process is the pair $\left(G^{*}, \sigma^{*}\right)$

The planted model

Uniform Model
(1) random graph $\boldsymbol{G}(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update

Update for Teacher-Student
the input of the process is the pair $\left(G^{*}, \sigma^{*}\right)$

- this process is simpler to analyse

The planted model

Uniform Model
(1) random graph $\boldsymbol{G}(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update

Update for Teacher-Student
the input of the process is the pair $\left(G^{*}, \sigma^{*}\right)$

- this process is simpler to analyse
- in uniqueness the disagreements grow subcritically (proof)

The planted model

Uniform Model
(1) random graph $\boldsymbol{G}(n, m)$
(2) randomness of σ
(3) choices of Update

Teacher-Student Model
(1) generate σ^{*}
(2) graph G^{*}
(3) choices of Update

Update for Teacher-Student
the input of the process is the pair $\left(G^{*}, \sigma^{*}\right)$

- this process is simpler to analyse
- in uniqueness the disagreements grow subcritically (proof)
- ... argue that this implies the same for the "real process"

Contiguity

[^0]
Contiguity

- consider a Gibbs distribution
- e.g., for Potts we need q and β

Contiguity

- consider a Gibbs distribution
- e.g., for Potts we need q and β

Uniform pair (G, σ)

- $G=G(n, m)$
- $\boldsymbol{\sigma} \sim \mu_{\boldsymbol{G}}$

Contiguity

- consider a Gibbs distribution
- e.g., for Potts we need q and β

Uniform pair (G, σ)

- $G=G(n, m)$
- $\boldsymbol{\sigma} \sim \mu_{\boldsymbol{G}}$

Planted pair $\left(G^{*}, \sigma^{*}\right)$

- σ^{*} a $|\mathcal{S}|$-partion of vertices
- generate $\boldsymbol{G}^{*}=\boldsymbol{G}^{*}\left(\boldsymbol{\sigma}^{*}\right)$

Contiguity

Contiguity

Definition
We say that $(\boldsymbol{G}, \boldsymbol{\sigma})$ and $\left(\boldsymbol{G}^{*}, \boldsymbol{\sigma}^{*}\right)$ are mutual contiguous when for any property \mathcal{A}_{n} we have that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left(\boldsymbol{G}^{*}, \boldsymbol{\sigma}^{*}\right) \in \mathcal{A}_{n}\right]=0 \quad \text { iff } \quad \lim _{n \rightarrow \infty} \operatorname{Pr}\left[(\boldsymbol{G}, \boldsymbol{\sigma}) \in \mathcal{A}_{n}\right]=0
$$

Contiguity

Definition
We say that $(\boldsymbol{G}, \boldsymbol{\sigma})$ and $\left(\boldsymbol{G}^{*}, \boldsymbol{\sigma}^{*}\right)$ are mutual contiguous when for any property \mathcal{A}_{n} we have that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left(\boldsymbol{G}^{*}, \boldsymbol{\sigma}^{*}\right) \in \mathcal{A}_{n}\right]=0 \quad \text { iff } \quad \lim _{n \rightarrow \infty} \operatorname{Pr}\left[(\boldsymbol{G}, \boldsymbol{\sigma}) \in \mathcal{A}_{n}\right]=0
$$

Contiguity implies ...

the two distributions have the same typical properties

Back to sampling

Back to sampling

Update for Teacher-Student the input of the process is the pair $\left(G^{*}, \sigma^{*}\right)$

- this process is simpler to analyse
- in uniqueness the disagreements grow subcritically (proof)
- ... the same holds for the "real process"

Back to sampling

Update for Teacher-Student the input of the process is the pair $\left(G^{*}, \sigma^{*}\right)$

- this process is simpler to analyse
- in uniqueness the disagreements grow subcritically (proof)
- ... the same holds for the "real process"
- the above is true due to contiguity

Overview of the result

High level

Overview of the result

High level

We proved that
For symmetric Gibbs distributions on $\boldsymbol{G}(n, m)$ that
(1) parameters in the (conjectured) Gibbs uniqueness

- parametrised w.r.t. the expected degree $d>0$
(2) exhibit contiguity with the corresponding teacher-student model
there is an $O\left(n^{2} \log n\right)$ time sampler such that the following holds: with probability $1-o(1)$ over $G(n, m)$ the output error is $n^{-\Omega(1)}$.

Overview of the result

High level

We proved that
For symmetric Gibbs distributions on $\boldsymbol{G}(n, m)$ that
(1) parameters in the (conjectured) Gibbs uniqueness

- parametrised w.r.t. the expected degree $d>0$
(2) exhibit contiguity with the corresponding teacher-student model
there is an $O\left(n^{2} \log n\right)$ time sampler such that the following holds: with probability $1-o(1)$ over $G(n, m)$ the output error is $n^{-\Omega(1)}$. Uniqueness Vs Contiguity
contiguity is much weaker a notion than uniqueness

Results

Results

- antiferromagnetic Ising model

Results

- antiferromagnetic Ising model
- antiferromagnetic Potts model

Results

- antiferromagnetic Ising model
- antiferromagnetic Potts model
- random k-NAE-SAT solutions

Results

- antiferromagnetic Ising model
- antiferromagnetic Potts model
- random k-NAE-SAT solutions
- k-spin model for $k \geq 2$ even integer

Results

- antiferromagnetic Ising model
- antiferromagnetic Potts model
- random k-NAE-SAT solutions
- k-spin model for $k \geq 2$ even integer

Which parameters?
(conjectured) tree uniqueness parametrised w.r.t. the expected degree d

Results

- antiferromagnetic Ising model
- antiferromagnetic Potts model
- random k-NAE-SAT solutions
- k-spin model for $k \geq 2$ even integer

Contiguity

- Coja-Oghlan, Krzakala, Perkins, Zdeborova 2017
- Coja-Oghlan, Efthymiou, Jaafari, Kang, Kapetanopoulos 2017
- Coja-Oghlan, Kapetanopoulos, Muller, 2018

For exact statement of results ...

On sampling symmetric Gibbs distributions on sparse random graphs and hypergraphs https://arxiv.org/abs/2007.07145

Concluding Remarks

Concluding Remarks

- Presented a novel approximate sampling algorithm

Concluding Remarks

- Presented a novel approximate sampling algorithm
- underlying graph is $G(n, m)$

Concluding Remarks

- Presented a novel approximate sampling algorithm
- underlying graph is $G(n, m)$
- any fixed expected degree $d>0$

Concluding Remarks

- Presented a novel approximate sampling algorithm
- underlying graph is $G(n, m)$
- any fixed expected degree $d>0$
- works for any symmetric Gibbs distribution

Concluding Remarks

- Presented a novel approximate sampling algorithm
- underlying graph is $G(n, m)$
- any fixed expected degree $d>0$
- works for any symmetric Gibbs distribution
- running time $O\left(n^{2} \log n\right)$

Concluding Remarks

- Presented a novel approximate sampling algorithm
- underlying graph is $G(n, m)$
- any fixed expected degree $d>0$
- works for any symmetric Gibbs distribution
- running time $O\left(n^{2} \log n\right)$
- accuracy $n^{-\Omega(1)}$

Concluding Remarks

- Presented a novel approximate sampling algorithm
- underlying graph is $G(n, m)$
- any fixed expected degree $d>0$
- works for any symmetric Gibbs distribution
- running time $O\left(n^{2} \log n\right)$
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
- for the anti-ferromagnetic distributions it outperform any other sampler for $\boldsymbol{G}(n, m)$

Concluding Remarks

- Presented a novel approximate sampling algorithm
- underlying graph is $\boldsymbol{G}(n, m)$
- any fixed expected degree $d>0$
- works for any symmetric Gibbs distribution
- running time $O\left(n^{2} \log n\right)$
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
- for the anti-ferromagnetic distributions it outperform any other sampler for $G(n, m)$
- applies to spin-glasses

Concluding Remarks

- Presented a novel approximate sampling algorithm
- underlying graph is $G(n, m)$
- any fixed expected degree $d>0$
- works for any symmetric Gibbs distribution
- running time $O\left(n^{2} \log n\right)$
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
- for the anti-ferromagnetic distributions it outperform any other sampler for $G(n, m)$
- applies to spin-glasses
- uses concepts from other research areas

Concluding Remarks

- Presented a novel approximate sampling algorithm
- underlying graph is $\boldsymbol{G}(n, m)$
- any fixed expected degree $d>0$
- works for any symmetric Gibbs distribution
- running time $O\left(n^{2} \log n\right)$
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
- for the anti-ferromagnetic distributions it outperform any other sampler for $G(n, m)$
- applies to spin-glasses
- uses concepts from other research areas
- contiguity, from network inference algorithm

Concluding Remarks

- Presented a novel approximate sampling algorithm
- underlying graph is $\boldsymbol{G}(n, m)$
- any fixed expected degree $d>0$
- works for any symmetric Gibbs distribution
- running time $O\left(n^{2} \log n\right)$
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
- for the anti-ferromagnetic distributions it outperform any other sampler for $G(n, m)$
- applies to spin-glasses
- uses concepts from other research areas
- contiguity, from network inference algorithm
- broadcasting models and probabilities

The end

Thank you!

[^0]: 4ロ〉4岛〉4 三•

