Sampling symmetric Gibbs distributions on sparse random graphs with contiguity

Charis Efthymiou University of Warwick

Workshop on Inference Problems Goethe University of Frankfurt, 02/09/2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

• spin configurations on the vertices of a graph

• spin configurations on the vertices of a graph

• graph G=(V,E) and set of spins S

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• spin configurations on the vertices of a graph

- graph G=(V,E) and set of spins S
 configuration space S^V

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- spin configurations on the vertices of a graph
 - graph G=(V,E) and set of spins S
 - configuration space \mathcal{S}^V
- for each configuration σ specify weight (σ)

- spin configurations on the vertices of a graph
 - graph G=(V,E) and set of spins \mathcal{S}
 - configuration space \mathcal{S}^V
- for each configuration σ specify weight(σ)
- configuration σ is assigned probability measure

 $\mu(\sigma) \propto \texttt{weight}(\sigma)$

Potts model

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Potts model

•
$$G = (V, E)$$
, $S = \{1, 2, \dots, q\}$ and $\beta \in \mathbb{R} \cup \{\pm \infty\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Potts model

- G = (V, E), $S = \{1, 2, \dots, q\}$ and $\beta \in \mathbb{R} \cup \{\pm \infty\}$
- for each $\sigma \in S^V$ we have (σ is a *q*-colouring)

weight(σ) = exp($\beta \times \#$ monochromatic-edges)

Potts model

- G = (V, E), $S = \{1, 2, \dots, q\}$ and $\beta \in \mathbb{R} \cup \{\pm \infty\}$
- for each $\sigma \in S^V$ we have (σ is a *q*-colouring)

weight(σ) = exp($\beta \times \#$ monochromatic-edges)

• for $\beta < 0$ penalises monochromatic edges - antiferromagnetic

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Potts model

- G = (V, E), $S = \{1, 2, \dots, q\}$ and $\beta \in \mathbb{R} \cup \{\pm \infty\}$
- for each $\sigma \in S^V$ we have (σ is a *q*-colouring)

 $weight(\sigma) = exp(\beta \times \#monochromatic-edges)$

- for $\beta < 0$ penalises monochromatic edges antiferromagnetic
- for $\beta > 0$ favours monochromatic edges ferromagnetic

Potts model

- G = (V, E), $S = \{1, 2, \dots, q\}$ and $\beta \in \mathbb{R} \cup \{\pm \infty\}$
- for each $\sigma \in S^V$ we have (σ is a *q*-colouring)

 $weight(\sigma) = exp(\beta \times \#monochromatic-edges)$

- for $\beta < 0$ penalises monochromatic edges antiferromagnetic
- for $\beta > 0$ favours monochromatic edges ferromagnetic

Remarks

• for q = 2 we have the Ising model

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Potts model

- G = (V, E), $S = \{1, 2, \dots, q\}$ and $\beta \in \mathbb{R} \cup \{\pm \infty\}$
- for each $\sigma \in S^V$ we have (σ is a *q*-colouring)

 $weight(\sigma) = exp(\beta \times \#monochromatic-edges)$

- for $\beta < 0$ penalises monochromatic edges antiferromagnetic
- for $\beta > 0$ favours monochromatic edges ferromagnetic

Remarks

- for q = 2 we have the Ising model
- for $\beta=-\infty$ we have the Colouring model

For the Gibbs distribution μ on G = (V, E), generate *efficiently* the configuration $\sigma \sim \mu$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

For the Gibbs distribution μ on G = (V, E), generate *efficiently* the configuration $\sigma \sim \mu$

• worst-case the problem is computationally hard

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For the Gibbs distribution μ on G = (V, E), generate *efficiently* the configuration $\sigma \sim \mu$

- worst-case the problem is computationally hard
- generate efficiently $\pmb{\sigma}$ which is distributed "close" to μ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For the Gibbs distribution μ on G = (V, E), generate *efficiently* the configuration $\sigma \sim \mu$

- worst-case the problem is computationally hard
- generate efficiently ${m \sigma}$ which is distributed "close" to μ
- focus on the range of parameters of μ in which we can get "good" approximate samples

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

The sparse random graph

The sparse random graph

G(n, m) is the random graph on n vertices and m edges

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sparse random graph

G(n, m) is the random graph on n vertices and m edges

• expected degree d, i.e. $m = \frac{dn}{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sparse random graph

G(n, m) is the random graph on n vertices and m edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 0 and $n \to \infty$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The sparse random graph

G(n, m) is the random graph on n vertices and m edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 0 and $n \to \infty$

• ... that is
$$m = \Theta(n)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The sparse random graph

G(n, m) is the random graph on *n* vertices and *m* edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 0 and $n \to \infty$
 - ... that is $m = \Theta(n)$

Sampling Problem on G(n, m)

The sparse random graph

G(n, m) is the random graph on n vertices and m edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 0 and $n \to \infty$
 - ... that is $m = \Theta(n)$

Sampling Problem on G(n, m)

focus on approximate sampling

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The sparse random graph

G(n, m) is the random graph on n vertices and m edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 0 and $n \to \infty$
 - ... that is $m = \Theta(n)$

Sampling Problem on G(n, m)

- focus on approximate sampling
- use concepts from physics and related problems on random graphs to get better sampling algorithms

• Markov Chain Monte Carlo method

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Markov Chain Monte Carlo method
- Message Passing Algorithms

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Markov Chain Monte Carlo method
- Message Passing Algorithms
- Weitz's Algorithm

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Markov Chain Monte Carlo method
- Message Passing Algorithms
- Weitz's Algorithm
- Barvinok's approach

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Markov Chain Monte Carlo method
- Message Passing Algorithms
- Weitz's Algorithm
- Barvinok's approach
- See next talk for another ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Markov Chain Monte Carlo method
- Message Passing Algorithms
- Weitz's Algorithm
- Barvinok's approach
- See next talk for another ...

Our approach has nothing to do with all the above ...
Example from the past

Example from the past

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example with the Colouring Model

Example from the past

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example with the Colouring Model

• from (Efthymiou 2012).

G

・ロト・「四ト・「田下・「田下・(日下

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

A random colouring of G can be seen as a random colouring of the simpler G' conditional that v, u receive different colours.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

A random colouring of G can be seen as a random colouring of the simpler G' conditional that v, u receive different colours.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A random colouring of G can be seen as a random colouring of the simpler G' conditional that v, u receive different colours.

Update

Input: random *q*-colouring of *G* and the vertices *v*, *u*. Output: random *q*-colouring of *G*, conditional *u*, *v* are assigned different colours.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Update

Input: random *q*-colouring of *G* and the vertices *v*, *u*. Output: random *q*-colouring of *G*, conditional *u*, *v* are assigned different colours.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Update

Input: random *q*-colouring of *G* and the vertices *v*, *u*. Output: random *q*-colouring of *G*, conditional *u*, *v* are assigned different colours.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Update

Input: random *q*-colouring of *G* and the vertices *v*, *u*. Output: random *q*-colouring of *G*, conditional *u*, *v* are assigned different colours.

Be careful...

We can not change the colours of the vertices arbitrarily.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The sampling algorithm

The sampling algorithm Input: G = (V, E) q > 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sampling algorithm Input: G = (V, E) q > 0 $G_0, G_1, \dots, G_r = G$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sampling algorithm Input: G = (V, E) q > 0 $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sampling algorithm Input: G = (V, E) q > 0 $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sampling algorithm Input: G = (V, E) q > 0 $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$

Generate σ_0 a random coloring of G_0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sampling algorithm Input: G = (V, E) q > 0 $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 a random coloring of G_0

Iteratively: Use σ_i the colouring of G_i and Update to get σ_{i+1}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The sampling algorithm Input: G = (V, E) q > 0 $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 a random coloring of G_0

Iteratively: Use σ_i the colouring of G_i and Update to get σ_{i+1}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The sampling algorithm Input: G = (V, E) q > 0 $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 a random coloring of G_0 Iteratively: Use σ_i the colouring of G_i and Update to get σ_{i+1}

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

The sampling algorithm Input: G = (V, E) q > 0 $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 a random coloring of G_0

Iteratively: Use σ_i the colouring of G_i and Update to get σ_{i+1}

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

The sampling algorithm Input: G = (V, E) q > 0 $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 a random coloring of G_0

Iteratively: Use σ_i the colouring of G_i and Update to get σ_{i+1}

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

The sampling algorithm Input: G = (V, E) q > 0 $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$

Generate σ_0 a random coloring of G_0

Iteratively: Use σ_i the colouring of G_i and Update to get σ_{i+1} **Output:** σ_r , the colouring of G_r

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

ヘロト 人間 とくほとくほとう

æ

▲□▶▲圖▶▲圖▶▲圖▶ = ● のQの

<ロト < 団ト < 団ト < 団ト < 団ト 三 のQの</p>

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

(日) (四) (日) (日) (日)

Failure When both v_i and u_i change colour Update fails

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Failure Vs Approximation

Because of the failures Update is an approximation algorithm

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Failure Vs Approximation

Because of the failures Update is an approximation algorithm

• the output is approximately Gibbs distributed
... why approximate sampling?

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Error for Update

 \approx the probability of failure

... why approximate sampling?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Approximation Sampler

The sampling algorithm that uses Update is approximation too

... why approximate sampling?

Approximation Sampler

The sampling algorithm that uses Update is approximation too

output error \approx there is a failure is some iteration

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• for certain values of q the approach yields good approximation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- for certain values of q the approach yields good approximation
- almost all pairs v_i, u_i are far away

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- for certain values of q the approach yields good approximation
- almost all pairs v_i, u_i are far away
 - failure implies that we have an *extensive* chain

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- for certain values of q the approach yields good approximation
- almost all pairs v_i, u_i are far away
 - failure implies that we have an *extensive* chain
- care should be taken for v_i , u_i are at short distance

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- for certain values of q the approach yields good approximation
- almost all pairs v_i , u_i are far away
 - failure implies that we have an *extensive* chain
- care should be taken for v_i , u_i are at short distance
 - the update for such pairs is different (didn't show that)

Performance of Sampler

Theorem (Efthymiou 2016)

For $\epsilon > 0$, for large d > 0 and $q \ge (1 + \epsilon)d$ we have the following: With probability 1 - o(1) over the instances of G(n, m) the algorithm generates a q-colouring of G which is distributed within total variation distance $n^{-\Omega(1)}$ from the q-colouring model.

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Remark

Remark

Remark

Remark

Remark

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark

Remark

 $q > d \Rightarrow$ **Gibbs uniqueness** for the colourings on the *d*-ary tree

$$||\mu(\cdot)-\mu(\cdot \mid \sigma(L_h))||_{\{r\}}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remark

Remark

Remark

 $q > d \Rightarrow$ **Gibbs uniqueness** for the colourings on the *d*-ary tree

Gibbs Uniqueness $\iff \lim_{h\to\infty} ||\mu(\cdot) - \mu(\cdot \mid \sigma(L_h))||_{\{r\}} = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(ロ)、(型)、(E)、(E)、 E) の(()

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

similar approach other distributions

• add edges, use update, failure etc ...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- add edges, use update, failure etc ...
- general update independent of the distribution

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- add edges, use update, failure etc ...
- general update independent of the distribution
- the previous approach is *tailored* to colourings

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- add edges, use update, failure etc ...
- general update independent of the distribution
- the previous approach is *tailored* to colourings
 - already fails for the interesting cases of Potts model

- add edges, use update, failure etc ...
- general update independent of the distribution
- the previous approach is *tailored* to colourings
 - already fails for the interesting cases of Potts model
- (Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang '20)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- add edges, use update, failure etc ...
- general update independent of the distribution
- the previous approach is *tailored* to colourings
 - · already fails for the interesting cases of Potts model
- (Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang '20)
 - use here the sampler for the random cluster model

- add edges, use update, failure etc ...
- general update independent of the distribution
- the previous approach is *tailored* to colourings
 - · already fails for the interesting cases of Potts model
- (Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang '20)
 - use here the sampler for the random cluster model
 - special to distribution, too

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

propose a sampler for symmetric distributions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

propose a sampler for symmetric distributions

Includes ...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

propose a sampler for symmetric distributions

Includes ...

• Ising model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

propose a sampler for symmetric distributions

Includes ...

- Ising model
- Potts model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

propose a sampler for symmetric distributions

Includes ...

- Ising model
- Potts model
 - including colourings
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

propose a sampler for symmetric distributions

Includes ...

- Ising model
- Potts model
 - including colourings
- k not-all-equal SAT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

propose a sampler for symmetric distributions

Includes ...

- Ising model
- Potts model
 - including colourings
- k not-all-equal SAT
- k-spin model for $k \ge 2$ even integer

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

propose a sampler for symmetric distributions

Includes ...

- Ising model
- Potts model
 - including colourings
- k not-all-equal SAT
- *k*-spin model for $k \ge 2$ even integer
 - spin-glass distribution

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

propose a sampler for symmetric distributions

Includes ...

- Ising model
- Potts model
 - including colourings
- k not-all-equal SAT
- k-spin model for $k \ge 2$ even integer
 - spin-glass distribution

Remark

The above are for both graphs and hypergraphs

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The aim is the whole tree uniqueness region

• for many cases we only have conjectures about the region

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- for many cases we only have conjectures about the region
 - can't use the convergence of distributional recursions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- for many cases we only have conjectures about the region
 - can't use the convergence of distributional recursions
- circumvent the above by exploiting contiguity

- for many cases we only have conjectures about the region
 - can't use the convergence of distributional recursions
- circumvent the above by exploiting **contiguity**
 - from network inference algorithms e.g. for the Stochastic Block Model

Setting ...

▲□▶▲□▶▲□▶▲□▶ □ ● ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising or Potts

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising or Potts
- two graphs G and G' such that $G' = G \cup \{e\}$ for some edge e

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising or Potts
- two graphs G and G' such that $G' = G \cup \{e\}$ for some edge e
 - ... assume that both are of high girth

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising or Potts
- two graphs G and G' such that $G' = G \cup \{e\}$ for some edge e
 - ... assume that both are of high girth
- Gibbs distributions μ and μ' on G and G', resp.

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising or Potts
- two graphs G and G' such that $G' = G \cup \{e\}$ for some edge e
 - ... assume that both are of high girth
- Gibbs distributions μ and μ' on G and G', resp.
- configuration ${m \sigma}$ distributed as in μ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Setting ...

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising or Potts
- two graphs G and G' such that $G' = G \cup \{e\}$ for some edge e
 - ... assume that both are of high girth
- Gibbs distributions μ and μ' on G and G', resp.
- configuration $oldsymbol{\sigma}$ distributed as in μ

Objective

Generate efficiently ${m au}$ distributed close to μ'

G

(4日) (個) (目) (目) (目) (の)()

G

G'

G

G'

G

G'

G

G'

G

G'

G

G'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

G'

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

vertex w is a **disagreement** with spins {blue, yellow}

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

iteratively visit the vertices of G' one by one and decide their configuration at τ

look for z's, neighbours of w with $\sigma(z) \in \{ blue, yellow \}$

look for z's, neighbours of w with $\sigma(z) \in \{ blue, yellow \}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

pick x_2 and decide $\tau(x_2)$ such that $\tau(x_2) \in \{$ blue, yellow $\}$

we want to avoid a disagreement at x_2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

the probability of disagreement is minimised by **coupling** maximally the marginals of μ and μ' on x_2

maximal coupling

$$\Pr[\tau(x_2) = \texttt{blue}] = \max\left\{0, 1 - \frac{\mu'_{x_2}(\sigma(x_2) \mid \tau(\{u, w\}))}{\mu_{x_2}(\sigma(x_2) \mid \sigma(\{u, w\}))}\right\}.$$
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

maximal coupling

$$\Pr[\tau(x_2) = \texttt{blue}] = \max\left\{0, 1 - \frac{\mu'_{x_2}(\sigma(x_2) \mid \tau(\{u, w\}))}{\mu_{x_2}(\sigma(x_2) \mid \sigma(\{u, w\}))}\right\}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

the disagreement set now is $\{w, x_2\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

look for vertices z next to the disagreements such that $\sigma(z) \in \{\texttt{blue}, \texttt{yellow}\}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

choose x_3 and repeat as before ...

 $\Pr[\tau(x_3) = \texttt{yellow}] = \max\left\{0, 1 - \frac{\mu'_{x_3}(\sigma(x_3) \mid \tau(\{u, w, x_2\}))}{\mu_{x_3}(\sigma(x_3) \mid \sigma(\{u, w, x_2\}))}\right\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

disagreement cannot propagate any more

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the remaining vertices keep their assignments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the remaining vertices keep the initial assignments.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

the approach generates a $\mathbf{perfect}$ sample from μ'

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The catch ...

$$\Pr[\tau(x_3) = \texttt{yellow}] = \max\left\{0, 1 - \frac{\mu'_{x_3}(\sigma(x_3) \mid \tau(\{u, w, x_2\}))}{\mu_{x_3}(\sigma(x_3) \mid \sigma(\{u, w, x_2\}))}\right\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The catch ...

we need to compute $\mu'_{x_3}(\sigma(x_3) \mid \sigma(\{u, w, x_2\}))$ efficiently

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The idea ...

replace the Gibbs marginals with "good" approximations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Desideratum ...

compute efficiently the Gibbs marginal $\mu'_{x_3}(\sigma(x_3) \mid \sigma(\{u, w, x_2\}))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark

the marginal $\mu'_{x_3}(\sigma(x_3) \mid \sigma(\{u, w, x_2\}))$ is a "complicated object"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Observation ...

influences form vertices with configuration make the Gibbs marginal at x_3 complicated

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'

influence from the configuration at u

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'

influence from the configuration at u

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

G'

influence from the configuration at u

However ...

in most cases all but one vertex are far away (girth)

G'

Choosing the appropriate parameters ...

the influences from distance are very weak & in most cases only one vertex influences the marginal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

G'

Compute marginal but ...

ignore the influence on x_3 from u and w

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Effectively

use the marginal of x_3 on the graph within the dashed curve

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remarks

the "simplified" marginal on x_3 is trivial & is computed fast

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remarks

our marginal is also called broadcasting probability

G

|▲□▶▲圖▶▲≣▶▲≣▶ = 差 - 釣��

G

G

G

G

G

G

vertex w is a **disagreement** with spins $\mathcal{D} = \{$ **blue**, yellow $\}$

look for z, neighbour of w with $\sigma(z) \in \{\text{blue}, \text{yellow}\}\$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

pick x_2 and decide $\tau(x_2)$ such that $\tau(x_2) \in \{\text{blue}, \text{yellow}\}\$

 (G,σ) G'

maximal coupling of broadcasting probabilities

$$\Pr[\tau(x_2) = \texttt{blue}] = \max\left\{0, 1 - \frac{\mathfrak{m}_{x_2}(\sigma(x_2) \mid \tau(w))}{\mathfrak{m}_{x_2}(\sigma(x_2) \mid \sigma(w))}\right\}$$

 (G,σ) G'

maximal coupling of broadcasting probabilities

$$\Pr[\tau(x_2) = \texttt{blue}] = \max\left\{0, 1 - \frac{\mathfrak{m}_{x_2}(\sigma(x_2) \mid \tau(w))}{\mathfrak{m}_{x_2}(\sigma(x_2) \mid \sigma(w))}\right\}$$

 (G,σ) G'

maximal coupling of broadcasting probabilities

$$\Pr[\tau(x_2) = \texttt{blue}] = \max\left\{0, 1 - \frac{\mathfrak{m}_{x_2}(\sigma(x_2) \mid \tau(w))}{\mathfrak{m}_{x_2}(\sigma(x_2) \mid \sigma(w))}\right\}$$

the disagreement set is $\{w, x_2\}$

look for vertices z next to the disagreements such that $\sigma(z) \in \{\texttt{blue}, \texttt{yellow}\}$

choose x_3 and repeat as before ...

$$\mathsf{Pr}[\tau(x_3) = \mathtt{yellow}] = \max\left\{0, 1 - \frac{\mathfrak{m}_{x_3}(\sigma(x_3) \mid \tau(x_2))}{\mathfrak{m}_{x_3}(\sigma(x_3) \mid \sigma(x_2))}\right\}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

repeat in the same way for the rest of the vertices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

the disagreements cannot propagate any more

the remaining vertices keep the same assignment

the remaining vertices keep their assignments.

The catch ...

the process is not allowed to "self interact"

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Self interaction

- update neighbours of *u*
- the vertices whose assignment change induce a cycle

Failure

failure is when the process self-interacts.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

 (G,σ)

G'

 (G,σ)

G'

 (G,σ)

G'

G

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Accuracy

we have Update on input σ distributed as in $\mu(\cdot \mid \eta)$

- ν is the distribution of the output of Update
- compare ν with $\mu(\cdot \mid \xi)$

G

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Accuracy

G

 $||\nu - \mu(\cdot | \xi)||_{tv} = ???$

we handle the update as a (probabilistic) map

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

For configurations σ,τ

 $P_{\eta,\xi}(\sigma,\tau) :=$ Probability that update generates τ given input σ

we can define the reverse mapping (right to left)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

For configurations σ,τ

 $P_{\xi,\eta}(\tau,\sigma) :=$ Probability that reverse update generates σ on input τ

G

G

Transition probabilities

 $P_{\eta,\xi}(\cdot, \cdot) \Rightarrow$ for the mapping from left to right $P_{\xi,\eta}(\cdot, \cdot) \Rightarrow$ for the mapping from right to left

G

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

G Detailed Balance Property For any σ, τ we have

$$\mu(\sigma) \mathcal{P}_{\eta,\xi}(\sigma,\tau) = \mu(\tau) \mathcal{P}_{\xi,\eta}(\tau,\sigma)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\begin{array}{c} G & G \\ \mbox{Using detailed balance we get } \dots \\ ||\nu - \mu(\cdot \mid \xi)|| \approx \frac{1}{2} (\Pr[\mbox{Update Fails}] + \Pr[\mbox{Reverse Fails}]) \end{array}$

 (G,σ)

G'

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Remark

The choice of $\tau(u)$ and $\tau(w)$ in G' is oblivious to σ

 (G,σ)

 (G,σ)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sample from the distribution on the graph within the dashed lines

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Remarks

- introduces an extra error
- initial disagreement maybe ≥ 1

(ロ)、(型)、(E)、(E)、 E) のQ(()

The algorithm

The algorithm Input: G = (V, E) k > 0


```
The algorithm

Input: G = (V, E) k > 0

G_0, G_1, \dots, G_r = G
```


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The algorithm Input: $G = (V, E) \ k > 0$ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The algorithm Input: $G = (V, E) \ k > 0$ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The algorithm Input: $G = (V, E) \ k > 0$ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$

Generate σ_0 a random coloring of G_0
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The algorithm Input: $G = (V, E) \ k > 0$ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$

Generate σ_0 a random coloring of G_0

Iteratively: Use σ_i the colouring of G_i and Update to get σ_{i+1}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The algorithm Input: $G = (V, E) \ k > 0$ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$

Generate σ_0 a random coloring of G_0

Iteratively: Use σ_i the colouring of G_i and Update to get σ_{i+1} **Output:** σ_r , the colouring of G_r

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The algorithm Input: $G = (V, E) \ k > 0$ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 a random coloring of G_0

Iteratively: Use σ_i the colouring of G_i and Update to get σ_{i+1} **Output:** σ_r , the colouring of G_r

The error for the algorithm

pprox probability of failure at some iteration

The algorithm Input: $G = (V, E) \ k > 0$ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 a random coloring of G_0

Iteratively: Use σ_i the colouring of G_i and Update to get σ_{i+1} **Output:** σ_r , the colouring of G_r

The time complexity

the time complexity is $O(|E|^2)$

- for each iteration we compute O(|E|) broadcasting marginals
- we have |E| iterations

▲□▶▲圖▶★≧▶★≧▶ ≧ のQで

• we considered high girth graphs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- we considered high girth graphs
- typical instances of G(n, m) are a bit different

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- we considered high girth graphs
- typical instances of G(n, m) are a bit different
 - there are short cycles far apart from each other

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- we considered high girth graphs
- typical instances of G(n, m) are a bit different
 - there are short cycles far apart from each other
- we won't discuss the challenges from the short cycles here ...

For which parameters of the Gibbs distribution on G(n, m) do we get good approximations?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

For which parameters of the Gibbs distribution on G(n, m) do we get good approximations?

• good approximation \Rightarrow error $n^{-\Omega(1)}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

For which parameters of the Gibbs distribution on G(n, m) do we get good approximations?

- good approximation \Rightarrow error $n^{-\Omega(1)}$
- Gibbs uniqueness condition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For which parameters of the Gibbs distribution on G(n, m) do we get good approximations?

- good approximation \Rightarrow error $n^{-\Omega(1)}$
- Gibbs uniqueness condition
- tools based on Contiguity

Setting

Consider G(n, m) and σ distributed as in μ . Consider Update that starts from vertex v with initial assignment $\tau(v) \neq \sigma(v)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Setting

Consider G(n, m) and σ distributed as in μ . Consider Update that starts from vertex v with initial assignment $\tau(v) \neq \sigma(v)$

Objective

The disagreements grow subcritically

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Setting

Consider G(n, m) and σ distributed as in μ . Consider Update that starts from vertex v with initial assignment $\tau(v) \neq \sigma(v)$

Objective

The disagreements grow subcritically

The randomness ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Setting

Consider G(n, m) and σ distributed as in μ . Consider Update that starts from vertex v with initial assignment $\tau(v) \neq \sigma(v)$

Objective

The disagreements grow subcritically

The randomness ...

• the random graph G(n,m)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Setting

Consider G(n, m) and σ distributed as in μ . Consider Update that starts from vertex v with initial assignment $\tau(v) \neq \sigma(v)$

Objective

The disagreements grow subcritically

The randomness ...

- the random graph G(n,m)
- confinguration σ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Setting

Consider G(n, m) and σ distributed as in μ . Consider Update that starts from vertex v with initial assignment $\tau(v) \neq \sigma(v)$

Objective

The disagreements grow subcritically

The randomness ...

- the random graph G(n,m)
- confinguration σ
- random choices of Update

$\bigcirc _{x_0} \ \bigcirc _{x_1} \ \bigcirc _{x_2} \ \bigcirc _{x_3} \ \bigcirc _{x_4} \ \bigcirc _{x_5} \ \bigcirc _{x_6} \ \bigcirc _{x_7}$

consider a permutation of vertices s.t. $x_0 = v$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$\bigcirc_{x_0} ~~ \bigcirc_{x_1} ~~ \bigcirc_{x_2} ~~ \bigcirc_{x_3} ~~ \bigcirc_{x_4} ~~ \bigcirc_{x_5} ~~ \bigcirc_{x_6} ~~ \bigcirc_{x_7}$

reveal the graph structure G(n, m)

reveal the graph structure G(n, m)

we care whether x_0, \ldots, x_7 forms a path in G(n, m)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

we set initial disagreement at x_0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

we set initial disagreement at x_0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

the two configurations at x_0 are from the input σ and he output au of Update

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

focus is on the **probability** that the disagreement propagates over the path x_0, \ldots, x_7

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

in steps, for x_1, x_2, \ldots , we reveal the configurations on the vertices in the path

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Disagreement probability

the probability that the disagreement propagates one step further

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Disagreement probability

the probability that the disagreement propagates one step further

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Disagreement probability

the probability that the disagreement propagates one step further

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Desideratum

at each step the disagreement probability < 1/d

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark I

this probability depends on μ and the random choice of \mathtt{Update}
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Some magic

if Gibbs marginal at x_3 was close to the broadcasting probability

Some magic

if Gibbs marginal at x_3 was close to the broadcasting probability \Rightarrow in the (conjectured) uniqueness region we have the desideratum

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Some problems

if Gibbs marginal at x_3 was close to the broadcasting probability \Rightarrow in the (conjectured) uniqueness region we have the desideratum

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Contiguity to the rescue ...

Idea . . . Reconsider the order of randomness

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Uniform Model

- **1** random graph G(n, m)
- **2** randomness of σ
- 3 choices of Update

Uniform Model

- **1** random graph G(n, m)
- **2** randomness of σ
- 3 choices of Update

Teacher-Student Model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1 random graph G(n, m)
- **2** randomness of σ
- 3 choices of Update

The planted model

Teacher-Student Model 1 generate σ^*

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- **1** random graph G(n, m)
- **2** randomness of σ
- 3 choices of Update

The planted model

Teacher-Student Model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

() generate σ^*

 ${\it 2 \ graph} \ G^*$

- **1** random graph G(n, m)
- **2** randomness of σ
- 3 choices of Update

The planted model

Teacher-Student Model

- 1) generate σ^*
- ${\it 2 graph} \ G^*$
- 3 choices of Update

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 1 random graph G(n, m)
- **(2)** randomness of σ
- 3 choices of Update

The planted model

Teacher-Student Model

- 1 generate σ^*
- ${\it 2 graph} \ G^*$
- 3 choices of Update

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- **1** random graph G(n, m)
- **(2)** randomness of σ
- 3 choices of Update

The planted model

Teacher-Student Model

- 1) generate σ^*
- 2 graph G^*
- 3 choices of Update

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 σ^* is a random *q*-partition of the vertex set, $\ldots q = |\mathcal{S}|$

- **1** random graph G(n, m)
- **(2)** randomness of σ
- 3 choices of Update

The planted model

Teacher-Student Model

- 1 generate σ^*
- 2 graph G^*
- 3 choices of Update

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 σ^* is a random q-partition of the vertex set, $\ldots q = |\mathcal{S}|$

• the distribution of σ^* is very simple

- **2** randomness of σ
- 3 choices of Update

The planted model

Teacher-Student Model

- 1 generate σ^*
- 2 graph G^*
- 3 choices of Update

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- **2** randomness of σ
- 3 choices of Update

The planted model

Teacher-Student Model

- 1) generate σ^*
- 2 graph G^*
- 3 choices of Update

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 G^* is a **weighted** random graph on *n* vertices, *m* edges

- **2** randomness of σ
- 3 choices of Update

The planted model

Teacher-Student Model

- $oldsymbol{0}$ generate σ^*
- 2 graph G^*
- 3 choices of Update

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- G^* is a **weighted** random graph on *n* vertices, *m* edges
 - the weights depends on Gibbs distribution
 - G^* depends on σ^*

Uniform Model
1 random graph G(n, m)
2 randomness of σ

3 choices of Update

Planting Colourings

The planted model

Teacher-Student Model

- 1 generate σ^*
- 2 graph G^*
- 3 choices of Update

Uniform Model
1 random graph G(n, m)
2 randomness of σ

3 choices of Update

Planting Colourings

The planted model

Teacher-Student Model

- 1 generate σ^*
- 2 graph G^*
- 3 choices of Update

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Uniform Model
1 random graph G(n, m)
2 randomness of σ

3 choices of Update

Planting Colourings

The planted model

Teacher-Student Model

- 1) generate σ^*
- 2 graph G^*
- 3 choices of Update

- **2** randomness of σ
- 3 choices of Update

The planted model

Teacher-Student Model

- 1 generate σ^*
- 2 graph G^*
- 3 choices of Update

Also known ...

in network inference they call it Stochastic Block Model

- **1** random graph G(n, m)
- **2** randomness of σ
- 3 choices of Update

The planted model

Teacher-Student Model

- 1) generate σ^*
- ${\it 2 graph} \ G^*$
- 3 choices of Update

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- **1** random graph G(n, m)
- **2** randomness of σ
- 3 choices of Update

The planted model

Teacher-Student Model

- 1) generate σ^*
- ${\it 2}$ graph G^*
- 3 choices of Update

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

- **1** random graph G(n, m)
- **2** randomness of σ
- 3 choices of Update

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

• this process is simpler to analyse

The planted model

Teacher-Student Model

- $oldsymbol{0}$ generate σ^*
- 2 graph G^*
- 3 choices of Update

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- **1** random graph G(n, m)
- **2** randomness of σ
- 3 choices of Update

The planted model

Teacher-Student Model

- 1) generate σ^*
- 2 graph G^*
- 3 choices of Update

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

- this process is simpler to analyse
- in uniqueness the disagreements grow subcritically (proof)

- **1** random graph G(n, m)
- **2** randomness of σ
- 3 choices of Update

The planted model

Teacher-Student Model

- $oldsymbol{0}$ generate σ^*
- 2 graph G^*
- 3 choices of Update

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

- this process is simpler to analyse
- in uniqueness the disagreements grow subcritically (proof)
- ... argue that this implies the same for the "real process"

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- consider a Gibbs distribution
 - e.g., for Potts we need q and β

- consider a Gibbs distribution
 - e.g., for Potts we need ${\it q}$ and β

Uniform pair (G, σ)

- G = G(n, m)
- $\boldsymbol{\sigma} \sim \mu_{\boldsymbol{G}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- consider a Gibbs distribution
 - e.g., for Potts we need q and β

Uniform pair (G, σ)

- G = G(n, m)
- $\boldsymbol{\sigma} \sim \mu_{\boldsymbol{G}}$
- Planted pair (G^*, σ^*)
 - σ^* a $|\mathcal{S}|$ -partion of vertices
 - generate $G^* = G^*(\sigma^*)$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Definition

We say that (G, σ) and (G^*, σ^*) are **mutual contiguous** when for any property \mathcal{A}_n we have that

$$\lim_{n\to\infty}\Pr[(G^*,\sigma^*)\in\mathcal{A}_n]=0\quad\text{iff}\quad\lim_{n\to\infty}\Pr[(G,\sigma)\in\mathcal{A}_n]=0.$$

Definition

We say that (G, σ) and (G^*, σ^*) are **mutual contiguous** when for any property \mathcal{A}_n we have that

$$\lim_{n\to\infty} \Pr[(\boldsymbol{G}^*,\boldsymbol{\sigma}^*)\in\mathcal{A}_n]=0 \quad \text{iff} \quad \lim_{n\to\infty}\Pr[(\boldsymbol{G},\boldsymbol{\sigma})\in\mathcal{A}_n]=0.$$

Contiguity implies ...

the two distributions have the same typical properties

Back to sampling

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Back to sampling

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

- this process is simpler to analyse
- in uniqueness the disagreements grow subcritically (proof)
- ... the same holds for the "real process"

Back to sampling

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

- this process is simpler to analyse
- in uniqueness the disagreements grow subcritically (proof)
- ... the same holds for the "real process"
- the above is true due to contiguity
Overview of the result High level

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Overview of the result High level

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We proved that

For symmetric Gibbs distributions on G(n, m) that

- 1 parameters in the (conjectured) Gibbs uniqueness
 - parametrised w.r.t. the expected degree d > 0
- exhibit contiguity with the corresponding teacher-student model

there is an $O(n^2 \log n)$ time sampler such that the following holds: with probability 1 - o(1) over G(n, m) the output error is $n^{-\Omega(1)}$.

Overview of the result High level

We proved that

For symmetric Gibbs distributions on G(n, m) that

- 1 parameters in the (conjectured) Gibbs uniqueness
 - parametrised w.r.t. the expected degree d > 0
- exhibit contiguity with the corresponding teacher-student model

there is an $O(n^2 \log n)$ time sampler such that the following holds: with probability 1 - o(1) over G(n, m) the output error is $n^{-\Omega(1)}$.

Uniqueness Vs Contiguity

contiguity is much weaker a notion than uniqueness

• antiferromagnetic Ising model

(ロ)、(型)、(E)、(E)、 E) のQ(()

- antiferromagnetic Ising model
- antiferromagnetic Potts model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- antiferromagnetic Ising model
- antiferromagnetic Potts model
- random k-NAE-SAT solutions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- antiferromagnetic Ising model
- antiferromagnetic Potts model
- random k-NAE-SAT solutions
- *k*-spin model for $k \ge 2$ even integer

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- antiferromagnetic Ising model
- antiferromagnetic Potts model
- random k-NAE-SAT solutions
- *k*-spin model for $k \ge 2$ even integer

Which parameters?

(conjectured) tree uniqueness parametrised w.r.t. the expected degree \boldsymbol{d}

- antiferromagnetic Ising model
- antiferromagnetic Potts model
- random k-NAE-SAT solutions
- *k*-spin model for $k \ge 2$ even integer

Contiguity

- Coja-Oghlan, Krzakala, Perkins, Zdeborova 2017
- Coja-Oghlan, Efthymiou, Jaafari, Kang, Kapetanopoulos 2017
- Coja-Oghlan, Kapetanopoulos, Muller, 2018

For exact statement of results ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

On sampling symmetric Gibbs distributions on sparse random graphs and hypergraphs https://arxiv.org/abs/2007.07145

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

- Presented a novel approximate sampling algorithm
 - underlying graph is G(n, m)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Presented a novel approximate sampling algorithm
 - underlying graph is G(n, m)
 - any fixed expected degree d > 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Presented a novel approximate sampling algorithm
 - underlying graph is G(n, m)
 - any fixed expected degree d > 0
 - works for any symmetric Gibbs distribution

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- underlying graph is G(n, m)
- any fixed expected degree d > 0
- works for any symmetric Gibbs distribution
- running time $O(n^2 \log n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- underlying graph is G(n, m)
- any fixed expected degree d > 0
- works for any symmetric Gibbs distribution
- running time $O(n^2 \log n)$
- accuracy $n^{-\Omega(1)}$

- underlying graph is G(n, m)
- any fixed expected degree d > 0
- works for any symmetric Gibbs distribution
- running time O(n² log n)
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
 - for the anti-ferromagnetic distributions it outperform any other sampler for G(n, m)

- underlying graph is G(n, m)
- any fixed expected degree d > 0
- works for any symmetric Gibbs distribution
- running time O(n² log n)
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
 - for the anti-ferromagnetic distributions it outperform any other sampler for G(n, m)
- applies to spin-glasses

- underlying graph is G(n, m)
- any fixed expected degree d > 0
- works for any symmetric Gibbs distribution
- running time O(n² log n)
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
 - for the anti-ferromagnetic distributions it outperform any other sampler for G(n, m)
- applies to spin-glasses
- uses concepts from other research areas

- underlying graph is G(n, m)
- any fixed expected degree d > 0
- works for any symmetric Gibbs distribution
- running time O(n² log n)
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
 - for the anti-ferromagnetic distributions it outperform any other sampler for G(n, m)
- applies to spin-glasses
- uses concepts from other research areas
 - contiguity, from network inference algorithm

- underlying graph is G(n, m)
- any fixed expected degree d > 0
- works for any symmetric Gibbs distribution
- running time O(n² log n)
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
 - for the anti-ferromagnetic distributions it outperform any other sampler for G(n, m)
- applies to spin-glasses
- uses concepts from other research areas
 - contiguity, from network inference algorithm
 - broadcasting models and probabilities

The end

Thank you!