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• configuration space SV

• for each configuration σ specify weight(σ)

• configuration σ is assigned probability measure
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Example

Potts model

• G = (V ,E ), S = {1, 2, . . . , q} and β ∈ R ∪ {±∞}
• for each σ ∈ SV we have (σ is a q-colouring)

weight(σ) = exp(β ×#monochromatic-edges)

• for β < 0 penalises monochromatic edges - antiferromagnetic

• for β > 0 favours monochromatic edges - ferromagnetic

Remarks

• for q = 2 we have the Ising model

• for β = −∞ we have the Colouring model
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Efficient sampling

For the Gibbs distribution µ on G = (V ,E ), generate efficiently
the configuration σ ∼ µ

• worst-case the problem is computationally hard

• generate efficiently σ which is distributed “close” to µ

• focus on the range of parameters of µ in which we can get
“good” approximate samples
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The case of G(n,m)

The sparse random graph

G(n,m) is the random graph on n vertices and m edges

• expected degree d , i.e. m = dn
2

• we focus on fixed d > 0 and n→∞

• . . . that is m = Θ(n)

Sampling Problem on G(n,m)

• focus on approximate sampling

• use concepts from physics and related problems on random
graphs to get better sampling algorithms
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Popular approaches to sampling problem

• Markov Chain Monte Carlo method

• Message Passing Algorithms

• Weitz’s Algorithm

• Barvinok’s approach

• See next talk for another . . .

Our approach has nothing to do with all the above . . .
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Update

Input: random q-colouring of G and the vertices v , u.

Output: random q-colouring of G , conditional u, v are
assigned different colours.

u
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Be careful...
We can not change the colours of the vertices arbitrarily.
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Update for sampling . . .

The sampling algorithm

Input: G = (V ,E ) q > 0

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 a random coloring of G0

Iteratively: Use σi the colouring of Gi and Update to get σi+1

Output: σr , the colouring of Gr

vi
ui

UPDATE



Update for sampling . . .

The sampling algorithm

Input: G = (V ,E ) q > 0

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 a random coloring of G0

Iteratively: Use σi the colouring of Gi and Update to get σi+1

Output: σr , the colouring of Gr

vi
ui

UPDATE



Update for sampling . . .

The sampling algorithm

Input: G = (V ,E ) q > 0

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 a random coloring of G0

Iteratively: Use σi the colouring of Gi and Update to get σi+1

Output: σr , the colouring of Gr

vi
ui

UPDATE



Update for sampling . . .

The sampling algorithm

Input: G = (V ,E ) q > 0

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 a random coloring of G0

Iteratively: Use σi the colouring of Gi and Update to get σi+1

Output: σr , the colouring of Gr

vi
ui

UPDATE



Update for sampling . . .

The sampling algorithm

Input: G = (V ,E ) q > 0

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}

−G0 is empty

Generate σ0 a random coloring of G0

Iteratively: Use σi the colouring of Gi and Update to get σi+1

Output: σr , the colouring of Gr

vi
ui

UPDATE



Update for sampling . . .

The sampling algorithm

Input: G = (V ,E ) q > 0

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 a random coloring of G0

Iteratively: Use σi the colouring of Gi and Update to get σi+1

Output: σr , the colouring of Gr

vi
ui

UPDATE



Update for sampling . . .

The sampling algorithm

Input: G = (V ,E ) q > 0

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 a random coloring of G0

Iteratively: Use σi the colouring of Gi and Update to get σi+1

Output: σr , the colouring of Gr

vi
ui

UPDATE



Update for sampling . . .

The sampling algorithm

Input: G = (V ,E ) q > 0

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 a random coloring of G0

Iteratively: Use σi the colouring of Gi and Update to get σi+1

Output: σr , the colouring of Gr

vi
ui

UPDATE



Update for sampling . . .

The sampling algorithm

Input: G = (V ,E ) q > 0

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 a random coloring of G0

Iteratively: Use σi the colouring of Gi and Update to get σi+1

Output: σr , the colouring of Gr

vi
ui

UPDATE



Update for sampling . . .

The sampling algorithm

Input: G = (V ,E ) q > 0

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 a random coloring of G0

Iteratively: Use σi the colouring of Gi and Update to get σi+1

Output: σr , the colouring of Gr

vi
ui

UPDATE



Update for sampling . . .

The sampling algorithm

Input: G = (V ,E ) q > 0

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 a random coloring of G0

Iteratively: Use σi the colouring of Gi and Update to get σi+1

Output: σr , the colouring of Gr

vi
ui

UPDATE

vi
ui



Update for sampling . . .

The sampling algorithm

Input: G = (V ,E ) q > 0

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 a random coloring of G0

Iteratively: Use σi the colouring of Gi and Update to get σi+1

Output: σr , the colouring of Gr

vi
ui

UPDATE

vi
ui



Update for sampling . . .

The sampling algorithm

Input: G = (V ,E ) q > 0

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 a random coloring of G0

Iteratively: Use σi the colouring of Gi and Update to get σi+1

Output: σr , the colouring of Gr

vi
ui

UPDATE

vi
ui



How does Update look like for G(n,m)?



How does Update look like for G(n,m)?

vi
ui



How does Update look like for G(n,m)?

vi
ui

vi
ui



How does Update look like for G(n,m)?

vi
ui

vi
ui

vi
ui



... why approximate sampling?

vi
ui

vi
ui

vi
ui



... why approximate sampling?

vi
ui

vi
ui

vi
ui



... why approximate sampling?

vi
ui

vi
ui

vi
ui



... why approximate sampling?

vi
ui

vi
ui

vi
ui



... why approximate sampling?

vi
ui

vi
ui

vi
ui

Failure
When both vi and ui change colour Update fails
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Approximation Sampler

The sampling algorithm that uses Update is approximation too

output error ≈ there is a failure is some iteration
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• for certain values of q the approach yields good approximation
• almost all pairs vi , ui are far away

• failure implies that we have an extensive chain

• care should be taken for vi , ui are at short distance

• the update for such pairs is different (didn’t show that)
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Performance of Sampler

Theorem (Efthymiou 2016)

For ε > 0, for large d > 0 and q ≥ (1 + ε)d we have the following:
With probability 1− o(1) over the instances of G(n,m) the
algorithm generates a q-colouring of G which is distributed within
total variation distance n−Ω(1) from the q-colouring model.
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Gibbs Tree Uniqueness

Remark
q > d ⇒ Gibbs uniqueness for the colourings on the d-ary tree

r

h

σ(Lh)

lim
h→∞

||µ(·)−µ(· | σ(Lh))||{r} =

{
0
δ > 0

Gibbs Uniqueness ⇐⇒ limh→∞ ||µ(·)− µ(· | σ(Lh))||{r} = 0
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• circumvent the above by exploiting contiguity

• from network inference algorithms e.g. for the Stochastic
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Setting . . .

• symmetric Gibbs distribution
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• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ
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Generate efficiently τ distributed close to µ′



Approach

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising or Potts

• two graphs G and G ′ such that G ′ = G ∪{e} for some edge e

• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed close to µ′



Approach

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising or Potts

• two graphs G and G ′ such that G ′ = G ∪{e} for some edge e

• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed close to µ′



Approach

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising or Potts

• two graphs G and G ′ such that G ′ = G ∪{e} for some edge e

• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed close to µ′



Approach

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising or Potts

• two graphs G and G ′ such that G ′ = G ∪{e} for some edge e
• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed close to µ′



Approach

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising or Potts

• two graphs G and G ′ such that G ′ = G ∪{e} for some edge e
• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed close to µ′



Approach

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising or Potts

• two graphs G and G ′ such that G ′ = G ∪{e} for some edge e
• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed close to µ′



Approach

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising or Potts

• two graphs G and G ′ such that G ′ = G ∪{e} for some edge e
• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed close to µ′



Ideal Solution



Ideal Solution

G



Ideal Solution

G G′



Ideal Solution

G G′



Ideal Solution

G G′



Ideal Solution

G G′



Ideal Solution

G G′



Ideal Solution

G

u w

G′

u w



Ideal Solution

(G, σ)

u w

G′

u w



Ideal Solution

(G, σ)

u w

G′

u w



Ideal Solution

(G, σ)

u w

G′

u w

vertex w is a disagreement with spins {blue, yellow}



Ideal Solution

(G, σ)

u w

G′

u w

iteratively visit the vertices of G ′ one by one and decide their
configuration at τ
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x2

we want to avoid a disagreement at x2
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x2

the probability of disagreement is minimised by coupling
maximally the marginals of µ and µ′ on x2
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look for vertices z next to the disagreements such that
σ(z) ∈ {blue, yellow}
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choose x3 and repeat as before . . .
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the remaining vertices keep the initial assignments.
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the approach generates a perfect sample from µ′



Ideal Solution

(G, σ)

u w

G′

u w

x2
x3

The catch . . .

Pr[τ(x3) = yellow] = max
{

0, 1− µ′x3 (σ(x3) | τ({u,w ,x2}))
µx3 (σ(x3) | σ({u,w ,x2}))

}
.
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The catch . . .

we need to compute µ′x3(σ(x3) | σ({u,w , x2})) efficiently
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The idea . . .

replace the Gibbs marginals with “good” approximations
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Desideratum . . .

compute efficiently the Gibbs marginal µ′x3(σ(x3) | σ({u,w , x2}))
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Remark

the marginal µ′x3(σ(x3) | σ({u,w , x2})) is a “complicated object”
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G′

u w

x2
x3

Observation . . .

influences form vertices with configuration make the Gibbs
marginal at x3 complicated



Some Intuition

G′

u w

x2
x3

influence from the configuration at x2



Some Intuition

G′

u w

x2
x3

influence from the configuration at w



Some Intuition

G′

u w

x2
x3

influence from the configuration at w



Some Intuition

G′

u w

x2
x3

influence from the configuration at w



Some Intuition

G′

u w

x2
x3

influence from the configuration at w



Some Intuition

G′

u w

x2
x3

influence from the configuration at w



Some Intuition

G′

u w

x2
x3

influence from the configuration at w



Some Intuition

G′

u w

x2
x3

influence from the configuration at u



Some Intuition

G′

u w

x2
x3

influence from the configuration at u



Some Intuition

G′

u w

x2
x3

influence from the configuration at u



Some Intuition

G′

u w

x2
x3

influence from the configuration at u



Some Intuition

G′

u w

x2
x3

influence from the configuration at u



Some Intuition

G′

u w

x2
x3

influence from the configuration at u



Some Intuition

G′

u w

x2
x3

influence from the configuration at u



Some Intuition

G′

u w

x2
x3

influence from the configuration at u



Some Intuition

G′

u w

x2
x3

However . . .

in most cases all but one vertex are far away (girth)
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Choosing the appropriate parameters . . .

the influences from distance are very weak & in most cases only
one vertex influences the marginal
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Compute marginal but . . .

ignore the influence on x3 from u and w
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Effectively

use the marginal of x3 on the graph within the dashed curve
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Remarks

the “simplified” marginal on x3 is trivial & is computed fast
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Remarks

our marginal is also called broadcasting probability
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The catch . . .

the process is not allowed to “self interact”
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Self interaction

• update neighbours of u

• the vertices whose assignment change induce a cycle
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Failure

failure is when the process self-interacts.
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Accuracy

we have Update on input σ distributed as in µ(· | η)

• ν is the distribution of the output of Update

• compare ν with µ(· | ξ)
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Accuracy

||ν − µ(· | ξ)||tv = ???
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we handle the update as a (probabilistic) map
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For configurations σ, τ

Pη,ξ(σ, τ) := Probability that update generates τ given input σ
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Reverse mapping

we can define the reverse mapping (right to left)
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For configurations σ, τ

Pξ,η(τ, σ) := Probability that reverse update generates σ on input τ
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Transition probabilities

Pη,ξ(·, ·)⇒ for the mapping from left to right
Pξ,η(·, ·)⇒ for the mapping from right to left
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Detailed Balance Property

For any σ, τ we have

µ(σ)Pη,ξ(σ, τ) = µ(τ)Pξ,η(τ, σ)
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Using detailed balance we get . . .

||ν − µ(· | ξ)|| ≈ 1
2(Pr[Update Fails] + Pr[Reverse Fails])
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Remark
The choice of τ(u) and τ(w) in G ′ is oblivious to σ
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Sample from the distribution on the graph within the dashed lines
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(G, σ)

u w

G′

u w

Remarks

• introduces an extra error

• initial disagreement maybe ≥ 1
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The algorithm

Input: G = (V ,E ) k > 0

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 a random coloring of G0

Iteratively: Use σi the colouring of Gi and Update to get σi+1

Output: σr , the colouring of Gr
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The iterative algorithm

The algorithm

Input: G = (V ,E ) k > 0

G0,G1, . . . ,Gr = G
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The iterative algorithm

The algorithm

Input: G = (V ,E ) k > 0

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 a random coloring of G0

Iteratively: Use σi the colouring of Gi and Update to get σi+1

Output: σr , the colouring of Gr

The time complexity

the time complexity is O(|E |2)
• for each iteration we compute O(|E |) broadcasting marginals

• we have |E | iterations
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consider a permutation of vertices s.t. x0 = v
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we care whether x0, . . . , x7 forms a path in G(n,m)



Analysis Sketch

G(n,m)

x0 x1 x2 x3 x4 x5 x6 x7

we set initial disagreement at x0



Analysis Sketch

G(n,m)

x0 x1 x2 x3 x4 x5 x6 x7

we set initial disagreement at x0



Analysis Sketch

G(n,m)

x0 x1 x2 x3 x4 x5 x6 x7

the two configurations at x0 are from the input σ and he output τ
of Update
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x0 x1 x2 x3 x4 x5 x6 x7

focus is on the probability that the disagreement propagates over
the path x0, . . . , x7
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G(n,m)

x0 x1 x2 x3 x4 x5 x6 x7

in steps, for x1, x2, . . ., we reveal the configurations on the vertices
in the path
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x0 x1 x2 x3 x4 x5 x6 x7

Desideratum
at each step the disagreement probability < 1/d



Analysis Sketch
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x0 x1 x2 x3 x4 x5 x6 x7

Remark I
this probability depends on µ and the random choice of Update
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Analysis Sketch

G(n,m)

x0 x1 x2 x3 x4 x5 x6 x7

Some problems

if Gibbs marginal at x3 was close to the broadcasting probability
⇒ in the (conjectured) uniqueness region we have the desideratum



Analysis Sketch

G(n,m)

x0 x1 x2 x3 x4 x5 x6 x7

Contiguity to the rescue . . .
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The planted model

Idea . . .
Reconsider the order of randomness
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1 generate σ∗

2 graph G∗

3 choices of Update

σ∗ is a random q-partition of the vertex set, . . . q = |S|
• the distribution of σ∗ is very simple
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1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

2 graph G∗

3 choices of Update

G∗ is a weighted random graph on n vertices, m edges

• the weights depends on Gibbs distribution

• G∗ depends on σ∗
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The planted model

Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

2 graph G∗

3 choices of Update

Also known . . .
in network inference they call it Stochastic Block Model
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Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

2 graph G∗

3 choices of Update

Update for Teacher-Student

the input of the process is the pair (G∗,σ∗)

• this process is simpler to analyse

• in uniqueness the disagreements grow subcritically (proof)

• . . . argue that this implies the same for the “real process”
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Back to sampling

Update for Teacher-Student

the input of the process is the pair (G∗,σ∗)
• this process is simpler to analyse

• in uniqueness the disagreements grow subcritically (proof)

• . . . the same holds for the “real process”

• the above is true due to contiguity



Overview of the result
High level

We proved that

For symmetric Gibbs distributions on G(n,m) that

1 parameters in the (conjectured) Gibbs uniqueness
• parametrised w.r.t. the expected degree d > 0

2 exhibit contiguity with the corresponding teacher-student
model

there is an O(n2 log n) time sampler such that the following holds:
with probability 1− o(1) over G(n,m) the output error is n−Ω(1).

Uniqueness Vs Contiguity

contiguity is much weaker a notion than uniqueness
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Results

• antiferromagnetic Ising model

• antiferromagnetic Potts model

• random k-NAE-SAT solutions

• k-spin model for k ≥ 2 even integer

Which parameters?

(conjectured) tree uniqueness parametrised w.r.t. the expected
degree d



Results

• antiferromagnetic Ising model

• antiferromagnetic Potts model

• random k-NAE-SAT solutions

• k-spin model for k ≥ 2 even integer

Contiguity
• Coja-Oghlan, Krzakala, Perkins, Zdeborova 2017

• Coja-Oghlan, Efthymiou, Jaafari, Kang, Kapetanopoulos 2017

• Coja-Oghlan, Kapetanopoulos, Muller, 2018



For exact statement of results . . .

On sampling symmetric Gibbs distributions on sparse random
graphs and hypergraphs

https://arxiv.org/abs/2007.07145



Concluding Remarks

• Presented a novel approximate sampling algorithm

• underlying graph is G(n,m)
• any fixed expected degree d > 0
• works for any symmetric Gibbs distribution
• running time O(n2 log n)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters

• for the anti-ferromagnetic distributions it outperform any other
sampler for G(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity, from network inference algorithm
• broadcasting models and probabilities



Concluding Remarks

• Presented a novel approximate sampling algorithm

• underlying graph is G(n,m)
• any fixed expected degree d > 0
• works for any symmetric Gibbs distribution
• running time O(n2 log n)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters

• for the anti-ferromagnetic distributions it outperform any other
sampler for G(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity, from network inference algorithm
• broadcasting models and probabilities



Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m)

• any fixed expected degree d > 0
• works for any symmetric Gibbs distribution
• running time O(n2 log n)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters

• for the anti-ferromagnetic distributions it outperform any other
sampler for G(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity, from network inference algorithm
• broadcasting models and probabilities



Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m)
• any fixed expected degree d > 0

• works for any symmetric Gibbs distribution
• running time O(n2 log n)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters

• for the anti-ferromagnetic distributions it outperform any other
sampler for G(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity, from network inference algorithm
• broadcasting models and probabilities



Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m)
• any fixed expected degree d > 0
• works for any symmetric Gibbs distribution

• running time O(n2 log n)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters

• for the anti-ferromagnetic distributions it outperform any other
sampler for G(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity, from network inference algorithm
• broadcasting models and probabilities



Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m)
• any fixed expected degree d > 0
• works for any symmetric Gibbs distribution
• running time O(n2 log n)

• accuracy n−Ω(1)

• performance in terms of the range of the parameters

• for the anti-ferromagnetic distributions it outperform any other
sampler for G(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity, from network inference algorithm
• broadcasting models and probabilities



Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m)
• any fixed expected degree d > 0
• works for any symmetric Gibbs distribution
• running time O(n2 log n)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters

• for the anti-ferromagnetic distributions it outperform any other
sampler for G(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity, from network inference algorithm
• broadcasting models and probabilities



Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m)
• any fixed expected degree d > 0
• works for any symmetric Gibbs distribution
• running time O(n2 log n)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters
• for the anti-ferromagnetic distributions it outperform any other

sampler for G(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity, from network inference algorithm
• broadcasting models and probabilities



Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m)
• any fixed expected degree d > 0
• works for any symmetric Gibbs distribution
• running time O(n2 log n)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters
• for the anti-ferromagnetic distributions it outperform any other

sampler for G(n,m)

• applies to spin-glasses

• uses concepts from other research areas

• contiguity, from network inference algorithm
• broadcasting models and probabilities



Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m)
• any fixed expected degree d > 0
• works for any symmetric Gibbs distribution
• running time O(n2 log n)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters
• for the anti-ferromagnetic distributions it outperform any other

sampler for G(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity, from network inference algorithm
• broadcasting models and probabilities



Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m)
• any fixed expected degree d > 0
• works for any symmetric Gibbs distribution
• running time O(n2 log n)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters
• for the anti-ferromagnetic distributions it outperform any other

sampler for G(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity, from network inference algorithm

• broadcasting models and probabilities



Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m)
• any fixed expected degree d > 0
• works for any symmetric Gibbs distribution
• running time O(n2 log n)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters
• for the anti-ferromagnetic distributions it outperform any other

sampler for G(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity, from network inference algorithm
• broadcasting models and probabilities



The end

Thank you!


