Inference and Mutual Information on Random Factor Graphs

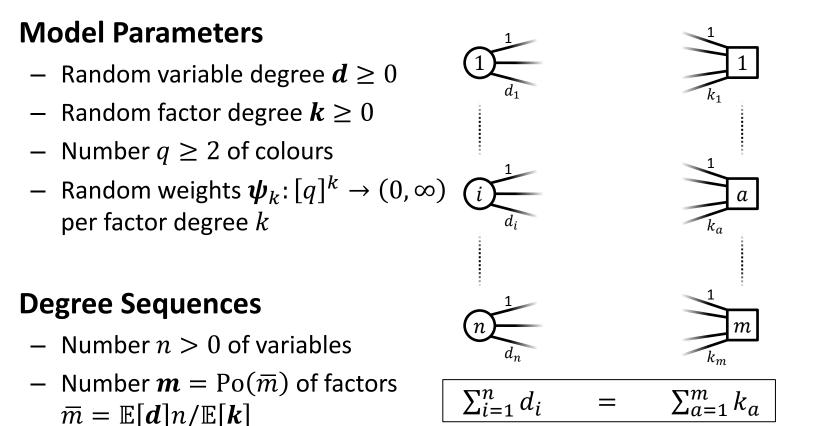
Matija Pasch LMU Munich

with A. Coja-Oghlan, M. Hahn-Klimroth, P. Loick (Goethe Frankfurt) N. Müller, K. Panagiotou (LMU Munich)

Inference Problems: Algorithms and Lower Bounds Workshop at the Goethe University Frankfurt on September 4th, 2020

- Random Factor Graphs
- Examples: Stochastic Block Model and LDGM Codes
- Inference and Mutual Information
- Proof Overview

Random Factor Graphs



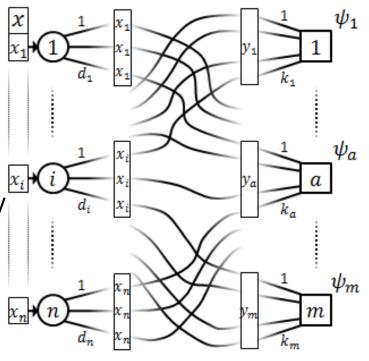
- I.i.d. degrees d_1, \dots, d_n from d and k_1, \dots, k_m from k
- Draw \boldsymbol{t} given by $(\boldsymbol{m}, \boldsymbol{d}_1, ..., \boldsymbol{d}_n, \boldsymbol{k}_1, ..., \boldsymbol{k}_m) |\sum_{i=1}^n \boldsymbol{d}_i = \sum_{a=1}^m \boldsymbol{k}_a$

۲

Random Factor Graphs

- Null Model
 - Fix factor count and degrees
 - $t = (m, d_1, \dots, d_n, k_1, \dots, k_m)$
 - Uniform bipartite (multi-)graph
 - Weights $\boldsymbol{\psi}_a : [q]^{k_a} \to (0, \infty)$ from $\boldsymbol{\psi}_{k_a}$ for $1 \le a \le m$ independently
 - Null model G_t for fixed t is the resulting random factor graph
 - Null model G = G_t over the random degree sequences t

Assignments

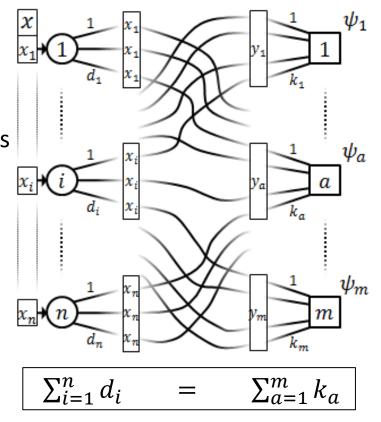


$$\sum_{i=1}^{n} d_i \qquad = \qquad \sum_{a=1}^{m} k_a$$

- Assignment $x \in [q]^n$ maps to assignment $y = (y_1, \dots, y_m)$ via G
- Weight of x with respect to G is $\psi_G(x) = \prod_{a=1}^m \psi_a(y_a)$

Random Factor Graphs

- Teacher-Student Model
 - Fixed degrees t
 - Fixed ground truth $x \in [q]^n$
 - Teacher-Student Model $G_t^*(x)$ has Radon-Nikodym derivative $G \mapsto \psi_G(x) / \mathbb{E}[\psi_{G_t}(x)]$ with respect to G_t
 - Uniform ground truth $x^* \in [q]^n$
 - Teacher-Student Model $G^* = G_t^*(x^*)$ over random ground truth and degrees



- Random Factor Graphs
- Examples: Stochastic Block Model and LDGM Codes
- Inference and Mutual Information
- Proof Overview

Examples – Stochastic Block Model

Model Parameters (Regular)

- Number $q \ge 2$ of communities
- Vertex degree $d \ge 3$
- Penalty/inverse temperature β

Null Model

- Number n > 0 of vertices
- Uniform *d*-regular graph *G*
- Stochastic Block Model
 - Partition $x \in [q]^n$ of vertices
 - Stochastic block model $G^*(x)$ given by weights $\beta > 0$ $\exp(-\beta \sum_{ij \in E(G)} \mathbb{1}\{x_i = x_j\}) = \prod_{ij} \exp(-\beta \mathbb{1}\{x_i = x_j\})$ with G d-regular
 - Stochastic block model G^* over uniformly random partition x^*
 - Parameters d = d, k = 2, $\psi_2 = \psi$ a.s. with $\psi(y) = \exp(-\beta \mathbb{1}\{y_1 = y_2\})$

Examples – Low Density Generator Matrix Codes

Model Parameters

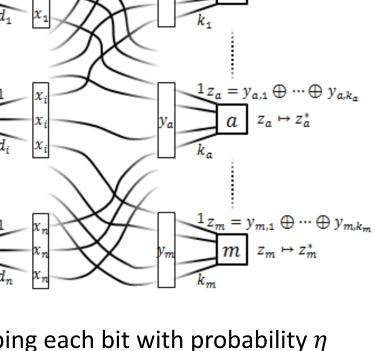
- Random column sum $d \ge 0$
- Random row sum $k \ge 0$
- Flip probability $\eta \in (0, 1/2)$

LDGM Codes

- Number *n*, *m* of input/output bits
- Degrees d_i , k_a and graph G with biadjacency matrix $A(G) \in \mathbb{F}_2^{m \times n}$
- For input $x \in \mathbb{F}_2^n$ compute output $z = A(G)x \in \mathbb{F}_2^m$ and $z^*(z) \in \mathbb{F}_2^m$ by flipping each bit with probability η

 $x_n (n)$

- Output z^* for uniform graph, input x^* , random degrees t (as before)
- Parameters q = 2 over $\{-1,1\}$, d, k, and $\psi_k \in \{\psi_{k,-1}, \psi_{k,1}\}$ uniformly with $\psi_{k,J}(y) = 1 + (1 2\eta)J \prod_{h=1}^k y_h$ for $y \in \{-1,1\}^k$ and $J \in \{-1,1\}$



 $= y_{1,1} \oplus \cdots \oplus y_{1,k_1}$

- Random Factor Graphs
- Examples: Stochastic Block Model and LDGM Codes
- Inference and Mutual Information
- Proof Overview

Assumptions

- Degrees satisfy $\mathbb{E}[d^{2+\varepsilon}]$, $\mathbb{E}[k^{2+\varepsilon}] \in \mathbb{R}_{>0}$
- Support of ψ_k is finite for all k(e.g. violated by mixed **k**-spin model, rectifiable via discretization?)
- There exists ε with $\varepsilon < \psi_k < 1/\varepsilon$ a.s. for all k(e.g. violated by mixed k-spin model, CSPs, rectifiable via capping?)
- There exists ξ with ∑_y 1{y_h = z}ψ_k(y) = ξq^{k-1} a.s.
 for all z ∈ [q], h ∈ [k], k
 (e.g. violated by positive temperature k-SAT, unbalanced problems)
- For all k the map $\mathcal{P}([q]) \to \mathbb{R}_{\geq 0}$, $p \mapsto \sum_{y \in [q]^k} \mathbb{E}[\boldsymbol{\psi}_k(y)] \prod_{h \in [k]} p(y_h)$, is concave and maximal at the uniform distribution $u_{[q]} \in \mathcal{P}([q])$ (violated by unbalanced problems, e.g. perfect matchings in hypergraphs)
- Convexity assumption POS ...

(e.g. violated by the assortative stochastic block model, $\beta < 0$)

Mutual Information

- Fix *n* and $t = (m, d_1, ..., d_n, k_1, ..., k_m)$
- Mutual information per variable given degrees t $i(t) = \frac{1}{n} I(\mathbf{G}_{t}^{*}(\mathbf{x}^{*}), \mathbf{x}^{*})$ $= \frac{1}{n} \sum_{G, x} \mathbb{P}[\mathbf{G}_{t}^{*}(x) = G, \mathbf{x}^{*} = x] \ln \frac{\mathbb{P}[\mathbf{G}_{t}^{*}(x) = G, \mathbf{x}^{*} = x]}{\mathbb{P}[\mathbf{G}_{t}^{*}(x) = G]\mathbb{P}[\mathbf{x}^{*} = x]}$
- Mutual information per variable $i_n = \frac{1}{n} I(\mathbf{G}^*, \mathbf{x}^*) = \mathbb{E}[i(\mathbf{t})]$

Bethe Functional

- Set $\mathcal{P}^2_*([q]) \subseteq \mathcal{P}(\mathcal{P}([q]))$ of distributions π over $\mathcal{P}([q]) \subseteq \mathbb{R}^q$ with $\mathbb{E}[\mu] = u_{[q]}$ uniform, where $\mu \in \mathcal{P}([q])$ has law π
- Fix q, d, k, ψ_k satisfying the assumptions, let ξ with $\sum_y \mathbb{1}\{y_h = z\}\psi_k(y) = \xi q^{k-1}$ a.s. and $\pi \in \mathcal{P}^2_*([q])$
- Reweighted degree $\mathbb{P}[\hat{k} = k] = k\mathbb{P}[k = k]/\mathbb{E}[k]$, i.i.d. copies \hat{k}_1 , ...
- I.i.d. copies $\mu_{a,h}$ and μ_h with law π for $a, h \ge 1$
- I.i.d. copies $\boldsymbol{\psi}_{k,a}$ of $\boldsymbol{\psi}_k$ for $a \geq 1$
- Independent uniform $h_{k,a} \in [k]$ for $a \ge 1$ and all k
- Using $\Lambda(x) = x \ln(x)$ the Bethe functional is given by

$$\mathcal{B}(\pi) = \frac{1}{q} \mathbb{E} \left[\frac{1}{\xi^d} \Lambda \left(\sum_{x=1}^q \prod_{a=1}^d \sum_{y \in [q]^k} \mathbb{1} \left\{ y_{\boldsymbol{h}_{\hat{\boldsymbol{k}}_{a},a}} = x \right\} \boldsymbol{\psi}_{\hat{\boldsymbol{k}}_{a},a}(y) \prod_{h \in [\hat{\boldsymbol{k}}_{a}] \setminus \{\boldsymbol{h}_{\hat{\boldsymbol{k}}_{a},a}\}} \boldsymbol{\mu}_{a,h}(y_h) \right) \right] \\ - \frac{\mathbb{E}[d]}{\xi \mathbb{E}[\boldsymbol{k}]} \mathbb{E} \left[(\boldsymbol{k} - 1) \Lambda \left(\sum_{y \in [q]^k} \boldsymbol{\psi}_{\boldsymbol{k}}(y) \prod_{h \in [\boldsymbol{k}]} \boldsymbol{\mu}_{h}(y_h) \right) \right]$$

• Free Entropy Density

- Partition function $Z_G = \sum_{x \in [q]^n} \psi_G(x)$ for factor graph G

- Free entropy density
$$\phi_G = \frac{1}{n} \ln(Z_G)$$

- Average $\phi^*(t) = \mathbb{E}[\phi_{G_t^*(x^*)}]$ for fixed degrees t

Proposition (Quenched Free Entropy Density TSS) We have $\lim_{n\to\infty} \mathbb{E}[\phi^*(t)] = \lim_{n\to\infty} \mathbb{E}[\phi_{\mathbf{G}^*}] = \sup_{\pi\in\mathcal{P}^2_*([q])} \mathcal{B}(\pi).$

Proposition (Quenched Free Entropy Density TSS)

 $\phi^*(t)$ converges to $\sup_{\pi \in \mathcal{P}^2_*([q])} \mathcal{B}(\pi)$ in probability.

• Mutual Information Asymptotics

- Mutual information i(t) boils down to $\phi^*(t)$ for typical degrees t
- We recover the limit of the expectation i_n and in probability
- Using $\Lambda(x) = x \ln x$ and ξ from the assumptions

Theorem (Mutual Information)

$$\lim_{n\to\infty} i_n = \ln(q) + \frac{\mathbb{E}[d]}{\xi \mathbb{E}[k]} \mathbb{E}\left[\frac{1}{q^k} \sum_{y\in[q]^k} \Lambda(\boldsymbol{\psi}_k(y))\right] - \sup_{\pi\in\mathcal{P}^2_*([q])} \mathcal{B}(\pi)$$

Theorem (Mutual Information)

i(t) converges to $\lim_{n\to\infty} i_n$ in probability.

Condensation Regime

- Annealed free entropy density $\phi_a = \lim_{n \to \infty} \mathbb{E}[\phi_{a,t}]$ with $\phi_{a,t} = \frac{1}{n} \ln(\mathbb{E}[Z_{G_t}])$ for given n and degrees t

- Using
$$\zeta_k = \sum_{y \in [q]^k} \mathbb{E}[\boldsymbol{\psi}_k(y)] = q^k \xi$$
 we have
 $\phi_a = (1 - \mathbb{E}[\boldsymbol{d}])\ln(q) + \frac{\mathbb{E}[\boldsymbol{d}]}{\mathbb{E}[\boldsymbol{k}]} \mathbb{E}[\ln(\zeta_k)] = \ln(q) + \frac{\mathbb{E}[\boldsymbol{d}]}{\mathbb{E}[\boldsymbol{k}]}\ln(\xi)$

- With q fixed, ϕ_a and $\mathcal{B} = \sup_{\pi \in \mathcal{P}^2_*([q])} \mathcal{B}(\pi)$ depend on d, k and $(\psi_k)_k$
- $\begin{array}{l} \mbox{ Replica symmetric regime} \\ \mathcal{R}_{\rm rs} = \{({\pmb d}, {\pmb k}, ({\pmb \psi}_k)_k) : \mathcal{B} \leq \phi_a\} \quad (\mbox{actually } \mathcal{B} = \phi_a) \end{array}$
- Condensation regime $\mathcal{R}_{cond} = \{(\boldsymbol{d}, \boldsymbol{k}, (\boldsymbol{\psi}_k)_k): \mathcal{B} > \phi_a\}$
- Canonical generalization of the condensation threshold for the binomial model

Condensation Results

- Boltzmann distribution $\mathbb{P}[\mathbf{x}_G = x] = \psi_G(x)/Z_G$ for factor graph G
- Relative entropy per variable of models

$$d_n = \frac{1}{n} D(\mathbf{x}^*, \mathbf{G}^* | | \mathbf{x}_{\mathbf{G}}, \mathbf{G}) = \frac{1}{n} \sum_{x, G} \mathbb{P}[\mathbf{x}^* = x, \mathbf{G}^* = G] \ln \frac{\mathbb{P}[\mathbf{x}^* = x, \mathbf{G}^* = G]}{\mathbb{P}[\mathbf{x}_{\mathbf{G}} = x, \mathbf{G} = G]}$$

Theorem (Quenched Free Entropy Density)

 $\lim_{n \to \infty} \mathbb{E}[\phi_{\mathbf{G}}] = \phi_{a} \text{ (in } \mathcal{R}_{rs} \text{) and } \limsup_{n \to \infty} \mathbb{E}[\phi_{\mathbf{G}}] < \phi_{a} \text{ (in } \mathcal{R}_{cond} \text{)}$

Theorem (Relative Entropy)

$$\lim_{n \to \infty} d_n = 0$$
 (in \mathcal{R}_{rs}) and $\liminf_{n \to \infty} d_n > 0$ (in \mathcal{R}_{cond})

LDGM Codes

- Can the input x be recovered from the scrambled output z^* ?
- Conjecture by Montanari (2005) confirmed (for the standard ensemble)
- Results by Coja-Oghlan et al. (2018) and van den Brand, Jaafari (2017) significantly extended

Stochastic Block Model

- Can the communities $x \in [q]^n$ be recovered from the graph G?
- Threshold β^* for the *d*-regular disassortative case is infimum of condensation regime (in β)
- For $\beta > \beta^*$ there exists an algorithm that approximates x

Other Models

- Long-range correlations for the mixed *k*-spin model

— ...

- Random Factor Graphs
- Examples: Stochastic Block Model and LDGM Codes
- Inference and Mutual Information
- Proof Overview

Mutual Information and Free Entropy

- Configuration model with variable/factor clones and bijections
- Factor assignment $y_t(x)$ for ground truth x under $G_t^*(x)$ and derived model $G_t^*(x, y)$ given the factor assignment y induced by x
- Nishimori model $\hat{x}_t \in [q]^n$ with weights $\mathbb{E}[\psi_{G_t}(x)]/\mathbb{E}[Z_{G_t}]$ and \hat{G}_t with RN derivative $Z_G/\mathbb{E}[Z_{G_t}]$ wrt G_t for fixed degrees t
- Nishimori identity: $(\widehat{x}_t, G_t^*(\widehat{x}_t))$ and $(x_{\widehat{G}_t}, \widehat{G}_t)$ have the same law
- Typical degrees t: asymptotical properties and uniform bounds
- Mutual contiguity of \hat{x}_t and x^* : limit distributions of colour frequencies (point probability asymptotics in large deviation regime, uniform bounds)
- Concentration of variable/factor assignment frequencies
 (given typical degrees and colour frequencies with uniform bounds)
- Determine asymptotics of the mutual information i(t) per variable up to the expected free entropy density $\phi^*(t)$

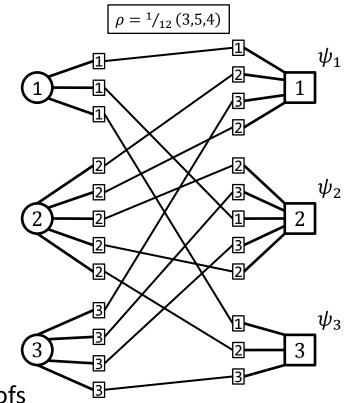
• Free Entropy and Degree Capping

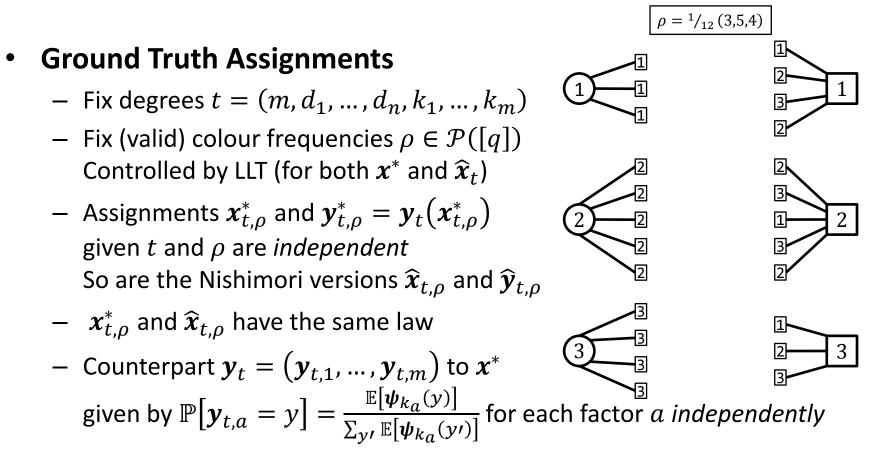
- Free entropy concentration for degrees t and assignments x, yaround $\phi^*(t, x, y) = \mathbb{E}[\phi_{G_t^*(x,y)}]$ using Azuma gives local concentration
- Lipschitz continuity of $\phi^*(t, x, y)$ using degree/assignment concentration gives global concentration with $\phi^* \approx \phi^*(t) \approx \phi^*(t, x, y)$
- Bounds on the distance of $\phi^*(t, x, y)$ and $\phi^*(t', x', y')$ in terms of the distance of (d, k) and (d', k') for typical outcomes (t, x, y), (t', x', y')
- Uniform continuity of the Bethe functional wrt (d, k)
- Proving $\lim_{n\to\infty} \mathbb{E}[\phi_{\mathbf{G}^*}] = \sup_{\pi\in\mathcal{P}^2_*([q])} \mathcal{B}(\pi)$ for finitely supported \mathbf{d} , \mathbf{k} is sufficient to obtain the general case

- Free Entropy and the Bethe Functional
 - Cavity model with $Po((1 \varepsilon)\overline{m})$ distributed number m_{ε} of factors and degrees $\boldsymbol{t}_{\varepsilon}$ subject to $\sum_{i=1}^{n} \boldsymbol{d}_{i} \geq \sum_{a=1}^{m_{\varepsilon}} \boldsymbol{k}_{a}$, resulting in unmatched variable clones (cavities)
 - Variable Pinning: Randomly choose a few variables and fix their value to the ground truth assignment (using factors)
 - Sufficient wiggle room for couplings and control over the dependencies of the coordinates of the posterior x_{G^*}
 - Aizenman-Sims-Starr scheme yields $\lim_{n\to\infty} \mathbb{E}[\phi_{\mathbf{G}^*}] \leq \sup_{\pi\in\mathcal{P}^2_*([q])} \mathcal{B}(\pi)$
 - Interpolation method yields $\lim_{n\to\infty} \mathbb{E}[\phi_{\mathbf{G}^*}] \ge \sup_{\pi\in\mathcal{P}^2_*([q])} \mathcal{B}(\pi)$

Teacher-Student Model

- Fix degrees $t = (m, d_1, ..., d_n, k_1, ..., k_m)$
- Fix consistent assignments x, y with same colour frequencies ρ on clones
- Independent bijections \boldsymbol{g}_z for $z \in [q]$
- Independent weights per factor aRN derivative $\psi \mapsto \psi(y_a) / \mathbb{E}[\psi_{k_a}(y_a)]$ with respect to ψ_{k_a}
- Resulting factor graph is $G_t^*(x, y)$
- Facilitates coupling and concentration proofs
- − Requires discussion of colour frequencies under x^* and \hat{x}_t → Convergence to normal centered at $u_{[q]}$ in both cases
- Requires discussion of assignment frequencies under $(x^*, y_t(x^*))$ and $(\hat{x}_t, y_t(\hat{x}_t))$ (given colour frequencies)
- Canonically translates to cavity model





- Colour frequencies of y_t concentrate around $u_{[q]}$ since ψ_k 's are balanced
- Both $y_{t,
 ho}^*$ and $\widehat{y}_{t,
 ho}$ have the same law as $y_{t,
 ho}$
- Canonically translates to cavity model

- Conclusion
 - Control **t**, fix degree sequences $t = (m, d_1, \dots, d_n, k_1, \dots, k_m)$
 - Control $\boldsymbol{\rho}_t^*$ and $\widehat{\boldsymbol{\rho}}_t$, fix colour frequencies ρ
 - Control assignments $x_{t,\rho}^*$ and $y_{t,\rho}$, fix x and y
 - Use independence of the components of $G_t^*(x, y)$ to control the free entropy density, mutual information per variable, ...

Next Steps

- Weaken/remove assumptions used for convenience
- Work towards zero temperature limit
- Consider unbalanced problems
- Strengthen connections to RSB theory

Thank you!

References

- J. van den Brand, N. Jaafari: The mutual information of LDGM codes. arXiv 1707.04413 (2017).
- A. Coja-Oghlan, M. Hahn-Klimroth, P. Loick, N. Müller, K. Panagiotou, M. Pasch: Inference and mutual information on random factor graphs. arXiv 2007.07494 (2020).
- A. Coja-Oghlan, F. Krzakala, W. Perkins, L. Zdeborová: Information-theoretic thresholds from the cavity method. Advances in Mathematics 333 (2018) 694–795.
- A. Montanari: Tight bounds for LDPC and LDGM codes under MAP decoding. IEEE Transactions on Information Theory 51 (2005) 3221-3246.