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Inference and Mutual Information – Factor Graphs 



• Model Parameters 

– Random variable degree 𝒅 ≥ 0 

– Random factor degree 𝒌 ≥ 0 

– Number 𝑞 ≥ 2 of colours 

– Random weights 𝝍𝑘: 𝑞
𝑘 → 0,∞   

per factor degree 𝑘 

 

• Degree Sequences 
– Number 𝑛 > 0 of variables 

– Number 𝒎 = Po 𝑚  of factors 
𝑚 = 𝔼 𝒅 𝑛/𝔼 𝒌   

– I.i.d. degrees 𝒅1, … , 𝒅𝑛 from 𝒅 and 𝒌1, … , 𝒌𝒎 from 𝒌 

– Draw 𝒕 given by  𝒎,𝒅1, … , 𝒅𝑛, 𝒌1, … , 𝒌𝒎 |  𝒅𝑖
𝑛
𝑖=1 =  𝒌𝑎

𝒎
𝑎=1  
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Random Factor Graphs 

Inference and Mutual Information – Factor Graphs 
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• Null Model 
– Fix factor count and degrees 

𝑡 = (𝑚, 𝑑1, … , 𝑑𝑛, 𝑘1, … , 𝑘𝑚)  

– Uniform bipartite (multi-)graph 

– Weights 𝝍𝑎: 𝑞
𝑘𝑎 → 0,∞  from 

𝝍𝑘𝑎  for 1 ≤ 𝑎 ≤ 𝑚 independently 

– Null model 𝑮𝑡 for fixed 𝑡 is the 
resulting random factor graph 

– Null model 𝑮 = 𝑮𝒕 over the 
random degree sequences 𝒕 

• Assignments 
– Assignment 𝑥 ∈ 𝑞 𝑛 maps to assignment 𝑦 = 𝑦1, … , 𝑦𝑚  via 𝐺 

– Weight of 𝑥 with respect to 𝐺 is 𝜓𝐺 𝑥 =  𝜓𝑎(𝑦𝑎)
𝑚
𝑎=1  
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Random Factor Graphs 

Inference and Mutual Information – Factor Graphs 

  𝑑𝑖
𝑛
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𝑚
𝑎=1   



• Teacher-Student Model 

– Fixed degrees 𝑡 

– Fixed ground truth 𝑥 ∈ 𝑞 𝑛 

– Teacher-Student Model 𝑮𝑡
∗(𝑥) has 

Radon-Nikodym derivative  

𝐺 ↦ 𝜓𝐺(𝑥)/𝔼 𝜓𝑮𝑡(𝑥)   

with respect to 𝑮𝑡 

– Uniform ground truth 𝒙∗ ∈ 𝑞 𝑛 

– Teacher-Student Model  
𝑮∗ = 𝑮𝒕

∗ 𝒙∗  over random  
ground truth and degrees 
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Inference and Mutual Information – Examples 



• Model Parameters (Regular) 

– Number 𝑞 ≥ 2 of communities 

– Vertex degree 𝑑 ≥ 3 

– Penalty/inverse temperature 𝛽 

• Null Model 
– Number 𝑛 > 0 of vertices 

– Uniform 𝑑-regular graph 𝑮 

• Stochastic Block Model 

– Partition 𝑥 ∈ 𝑞 𝑛 of vertices 

– Stochastic block model 𝑮∗ 𝑥  given by weights 

exp −𝛽 𝟙 𝑥𝑖 = 𝑥𝑗𝑖𝑗∈𝐸(𝐺) =  exp −𝛽𝟙 𝑥𝑖 = 𝑥𝑗𝑖𝑗  with 𝐺 𝑑-regular 

– Stochastic block model 𝑮∗ over uniformly random partition 𝒙∗ 

– Parameters 𝒅 = 𝑑, 𝒌 = 2, 𝝍2 = 𝜓 a.s. with 𝜓 𝑦 = exp −𝛽𝟙 𝑦1 = 𝑦2  
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Examples – Stochastic Block Model 

Inference and Mutual Information – Examples 



• Model Parameters 

– Random column sum 𝒅 ≥ 0 

– Random row sum 𝒌 ≥ 0 

– Flip probability 𝜂 ∈ 0,1/2  

 

• LDGM Codes 
– Number 𝑛, 𝑚 of input/output bits 

– Degrees 𝑑𝑖, 𝑘𝑎 and graph 𝐺 with 
biadjacency matrix 𝐴(𝐺) ∈ 𝔽2

𝑚×𝑛 

– For input 𝑥 ∈ 𝔽2
𝑛 compute output 

𝑧 = 𝐴 𝐺 𝑥 ∈ 𝔽2
𝑚 and 𝒛∗(𝑧) ∈ 𝔽2

𝑚 by flipping each bit with probability 𝜂 

– Output 𝒛∗ for uniform graph, input 𝒙∗, random degrees 𝒕 (as before) 

– Parameters 𝑞 = 2 over −1,1 , 𝒅 , 𝒌, and 𝝍𝑘 ∈ 𝜓𝑘,−1, 𝜓𝑘,1  uniformly 

with 𝜓𝑘,𝐽 𝑦 = 1 + 1 − 2𝜂 𝐽 𝑦ℎ
𝑘
ℎ=1  for 𝑦 ∈ −1,1 𝑘 and 𝐽 ∈ −1,1  
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Inference and Mutual Information 

Inference and Mutual Information – Main Results 

• Assumptions 

– Degrees satisfy 𝔼 𝒅2+𝜀 , 𝔼 𝒌2+𝜀 ∈ ℝ>0 

– Support of 𝝍𝑘 is finite for all 𝑘 
(e.g. violated by mixed 𝒌-spin model, rectifiable via discretization?) 

– There exists 𝜀 with 𝜀 < 𝝍𝑘 < 1/𝜀 a.s. for all 𝑘 
(e.g. violated by mixed 𝒌-spin model, CSPs, rectifiable via capping?) 

– There exists 𝜉 with  𝟙 𝑦ℎ = 𝑧 𝝍𝑘 𝑦 = 𝜉𝑞𝑘−1𝑦  a.s. 

for all 𝑧 ∈ 𝑞 , ℎ ∈ 𝑘 , 𝑘 
(e.g. violated by positive temperature 𝑘-SAT, unbalanced problems) 

– For all 𝑘 the map 𝒫 𝑞 → ℝ≥0, 𝑝 ↦  𝔼 𝝍𝑘(𝑦)𝑦∈ 𝑞 𝑘  𝑝(𝑦ℎ)ℎ∈ 𝑘 , 

is concave and maximal at the uniform distribution 𝑢 𝑞 ∈ 𝒫 𝑞  

(violated by unbalanced problems, e.g. perfect matchings in hypergraphs) 

– Convexity assumption POS … 
(e.g. violated by the assortative stochastic block model, 𝛽 < 0) 
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Inference and Mutual Information – Main Results 

• Mutual Information 

– Fix 𝑛 and 𝑡 = (𝑚, 𝑑1, … , 𝑑𝑛, 𝑘1, … , 𝑘𝑚) 

– Mutual information per variable given degrees 𝑡 
𝑖 𝑡 = 1

𝑛 𝐼 𝑮𝑡
∗ 𝒙∗ , 𝒙∗   

         = 1
𝑛  ℙ 𝑮𝑡

∗ 𝑥 = 𝐺, 𝒙∗ = 𝑥 ln
ℙ 𝑮𝑡

∗ 𝑥 =𝐺,𝒙∗=𝑥

ℙ 𝑮𝑡
∗ 𝑥 =𝐺 ℙ 𝒙∗=𝑥𝐺,𝑥  

– Mutual information per variable 
𝑖𝑛 = 1

𝑛 𝐼 𝑮∗, 𝒙∗ = 𝔼 𝑖(𝒕)   
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Inference and Mutual Information – Main Results 

• Bethe Functional 

– Set 𝒫∗
2 𝑞 ⊆ 𝒫 𝒫 𝑞  of distributions 𝜋 over 𝒫 𝑞 ⊆ ℝ𝑞 with 

𝔼 𝝁 = 𝑢 𝑞  uniform, where 𝝁 ∈ 𝒫 𝑞  has law 𝜋 

– Fix 𝑞, 𝒅, 𝒌, 𝝍𝑘 satisfying the assumptions, let 

𝜉 with  𝟙 𝑦ℎ = 𝑧 𝝍𝑘 𝑦 = 𝜉𝑞𝑘−1𝑦  a.s. and 𝜋 ∈ 𝒫∗
2 𝑞  

– Reweighted degree ℙ 𝒌 = 𝑘 = 𝑘ℙ 𝒌 = 𝑘 /𝔼 𝒌 , i.i.d. copies 𝒌 1, … 

– I.i.d. copies 𝝁𝑎,ℎ and 𝝁ℎ with law 𝜋 for 𝑎, ℎ ≥ 1 

– I.i.d. copies 𝝍𝑘,𝑎 of 𝝍𝑘 for 𝑎 ≥ 1 

– Independent uniform 𝒉𝑘,𝑎 ∈ 𝑘  for 𝑎 ≥ 1 and all 𝑘 

– Using Λ 𝑥 = 𝑥ln(𝑥) the Bethe functional is given by 

ℬ 𝜋 =
1

𝑞
𝔼

1

𝜉𝒅
Λ    𝟙 𝑦𝒉𝒌 𝑎,𝑎

= 𝑥 𝝍𝒌 𝑎,𝑎
(𝑦) 𝝁𝑎,ℎ(𝑦ℎ)ℎ∈ 𝒌 𝑎 ∖ 𝒉𝒌 𝑎,𝑎

𝑦∈ 𝑞 𝒌 𝑎
𝒅
𝑎=1

𝑞
𝑥=1    

              −
𝔼 𝒅

𝜉𝔼 𝒌
𝔼 𝒌 − 1 Λ  𝝍𝒌 𝑦  𝝁ℎ(𝑦ℎ)ℎ∈ 𝒌𝑦∈ 𝑞 𝒌  
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Inference and Mutual Information – Main Results 

• Free Entropy Density 

– Partition function 𝑍𝐺 =  𝜓𝐺(𝑥)𝑥∈ 𝑞 𝑛  for factor graph 𝐺 

– Free entropy density 𝜙𝐺 =
1

𝑛
ln 𝑍𝐺  

– Average 𝜙∗ 𝑡 = 𝔼 𝜙𝑮𝑡
∗ 𝒙∗  for fixed degrees 𝑡 

 
Proposition (Quenched Free Entropy Density TSS) 

We have lim𝑛→∞𝔼 𝜙∗(𝒕) = lim𝑛→∞𝔼 𝜙𝑮∗ = sup𝜋∈𝒫∗2( 𝑞 )ℬ(𝜋). 

Proposition (Quenched Free Entropy Density TSS) 

𝜙∗(𝒕) converges to sup𝜋∈𝒫∗2( 𝑞 )ℬ(𝜋) in probability. 
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Inference and Mutual Information 

Inference and Mutual Information – Main Results 

• Mutual Information Asymptotics 

– Mutual information 𝑖(𝑡) boils down to 𝜙∗(𝑡) for typical degrees 𝑡 

– We recover the limit of the expectation 𝑖𝑛 and in probability 

– Using Λ 𝑥 = 𝑥ln𝑥 and 𝜉 from the assumptions 

Theorem (Mutual Information) 

lim𝑛→∞𝑖𝑛 = ln 𝑞 +
𝔼 𝒅

𝜉𝔼 𝒌
𝔼

1

𝑞𝒌
 Λ 𝝍𝒌(𝑦)𝑦∈ 𝑞 𝒌 − sup𝜋∈𝒫∗2( 𝑞 )ℬ(𝜋)  

Theorem (Mutual Information) 

𝑖 𝒕  converges to lim𝑛→∞𝑖𝑛 in probability. 
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Inference and Mutual Information – Main Results 

• Condensation Regime 

– Annealed free entropy density 𝜙a = lim
𝑛→∞

𝔼 𝜙a,𝒕  with  

𝜙a,𝑡 =
1

𝑛
ln 𝔼 𝑍𝑮𝑡  for given 𝑛 and degrees 𝑡 

– Using 𝜁𝑘 =  𝔼 𝝍𝑘 𝑦𝑦∈ 𝑞 𝑘 = 𝑞𝑘𝜉 we have 

𝜙a = 1 − 𝔼 𝒅 ln 𝑞 +
𝔼 𝒅

𝔼 𝒌
𝔼 ln 𝜁𝒌 = ln 𝑞 +

𝔼 𝒅

𝔼 𝒌
ln 𝜉   

– With 𝑞 fixed, 𝜙a and ℬ = sup𝜋∈𝒫∗2 𝑞 ℬ 𝜋  depend on 𝒅, 𝒌 and 𝝍𝑘 𝑘 

– Replica symmetric regime 
ℛrs = 𝒅, 𝒌, 𝝍𝑘 𝑘 : ℬ ≤ 𝜙a      (actually ℬ = 𝜙a) 

– Condensation regime 
ℛcond = 𝒅, 𝒌, 𝝍𝑘 𝑘 : ℬ > 𝜙a   

– Canonical generalization of the condensation threshold for the binomial 
model 
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Inference and Mutual Information 

Inference and Mutual Information – Main Results 

• Condensation Results 

– Boltzmann distribution ℙ 𝒙𝐺 = 𝑥 = 𝜓𝐺(𝑥)/𝑍𝐺 for factor graph 𝐺 

– Relative entropy per variable of models 

𝑑𝑛 =
1

𝑛
𝐷 𝒙∗, 𝑮∗||𝒙𝑮, 𝑮 =

1

𝑛
 ℙ 𝒙∗ = 𝑥, 𝑮∗ = 𝐺𝑥,𝐺 ln

ℙ 𝒙∗=𝑥,𝑮∗=𝐺

ℙ 𝒙𝐺=𝑥,𝑮 =𝐺
  

Theorem (Quenched Free Entropy Density) 

lim
𝑛→∞

𝔼 𝜙𝑮 = 𝜙a (in ℛrs) and limsup
𝑛→∞

𝔼 𝜙𝑮 < 𝜙a (in ℛcond) 

Theorem (Relative Entropy) 

lim
𝑛→∞

𝑑𝑛 = 0 (in ℛrs) and liminf
𝑛→∞

𝑑𝑛 > 0 (in ℛcond) 
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Inference and Mutual Information 

Inference and Mutual Information – Main Results 

• LDGM Codes 

– Can the input 𝑥 be recovered from the scrambled output 𝑧∗? 

– Conjecture by Montanari (2005) confirmed (for the standard ensemble) 

– Results by Coja-Oghlan et al. (2018) and van den Brand, Jaafari (2017) 
significantly extended 

• Stochastic Block Model 
– Can the communities 𝑥 ∈ 𝑞 𝑛 be recovered from the graph 𝐺? 

– Threshold 𝛽∗ for the 𝑑-regular disassortative case is 
infimum of condensation regime (in 𝛽) 

– For 𝛽 > 𝛽∗ there exists an algorithm that approximates 𝑥 

• Other Models 
– Long-range correlations for the mixed 𝒌-spin model 

– … 
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Proof Overview 

Inference and Mutual Information – Proof 

• Mutual Information and Free Entropy 
– Configuration model with variable/factor clones and bijections 

– Factor assignment 𝒚𝑡 𝑥  for ground truth 𝑥 under 𝑮𝑡
∗ 𝑥  and 

derived model 𝑮𝑡
∗ 𝑥, 𝑦  given the factor assignment 𝑦 induced by 𝑥 

– Nishimori model  𝒙 𝑡 ∈ 𝑞 𝑛 with weights 𝔼 𝜓𝑮𝑡 𝑥 /𝔼 𝑍𝑮𝑡  and 

𝑮 𝑡 with RN derivative 𝑍𝐺/𝔼 𝑍𝑮𝑡  wrt 𝑮𝑡 for fixed degrees 𝑡 

– Nishimori identity: 𝒙 𝑡 , 𝑮𝑡
∗ 𝒙 𝑡  and 𝒙𝑮 𝑡 , 𝑮

 
𝑡  have the same law 

– Typical degrees 𝑡: asymptotical properties and uniform bounds 

– Mutual contiguity of  𝒙 𝑡 and 𝒙∗: limit distributions of colour frequencies 
(point probability asymptotics in large deviation regime, uniform bounds) 

– Concentration of variable/factor assignment frequencies 
(given typical degrees and colour frequencies with uniform bounds) 

– Determine asymptotics of the mutual information 𝑖 𝑡  per variable 
up to the expected free entropy density 𝜙∗(𝑡) 
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Proof Overview 

Inference and Mutual Information – Proof 

• Free Entropy and Degree Capping 

– Free entropy concentration for degrees 𝑡 and assignments 𝑥, 𝑦 

around 𝜙∗ 𝑡, 𝑥, 𝑦 = 𝔼 𝜙𝑮𝑡
∗ 𝑥,𝑦  using Azuma gives local concentration 

– Lipschitz continuity of 𝜙∗ 𝑡, 𝑥, 𝑦  using degree/assignment concentration 
gives global concentration with 𝜙∗ ≈ 𝜙∗(𝑡) ≈ 𝜙∗(𝑡, 𝑥, 𝑦) 

– Bounds on the distance of 𝜙∗ 𝑡, 𝑥, 𝑦  and 𝜙∗ 𝑡′, 𝑥′, 𝑦′  in terms of the 
distance of 𝒅, 𝒌  and 𝒅′, 𝒌′  for typical outcomes 𝑡, 𝑥, 𝑦 , 𝑡′, 𝑥′, 𝑦′  

– Uniform continuity of the Bethe functional wrt 𝒅, 𝒌  

– Proving lim𝑛→∞𝔼 𝜙𝑮∗ = sup𝜋∈𝒫∗2( 𝑞 )ℬ(𝜋) for finitely supported 𝒅, 𝒌 is 

sufficient to obtain the general case 
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Proof Overview 

Inference and Mutual Information – Proof 

• Free Entropy and the Bethe Functional 

– Cavity model with Po (1 − 𝜀)𝑚  distributed number 𝒎𝜀 of factors 

and degrees 𝒕𝜀 subject to  𝒅𝑖
𝑛
𝑖=1 ≥  𝒌𝑎

𝒎𝜀
𝑎=1 , resulting in 

unmatched variable clones (cavities) 

– Variable Pinning: Randomly choose a few variables and 
fix their value to the ground truth assignment (using factors) 

– Sufficient wiggle room for couplings and control over the dependencies 
of the coordinates of the posterior 𝒙𝑮∗ 

– Aizenman-Sims-Starr scheme yields lim𝑛→∞𝔼 𝜙𝑮∗ ≤ sup𝜋∈𝒫∗2( 𝑞 )ℬ(𝜋) 

– Interpolation method yields lim𝑛→∞𝔼 𝜙𝑮∗ ≥ sup𝜋∈𝒫∗2( 𝑞 )ℬ(𝜋) 
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Proof Overview 

Inference and Mutual Information – Proof 

• Teacher-Student Model 

– Fix degrees 𝑡 = 𝑚, 𝑑1, … , 𝑑𝑛, 𝑘1, … , 𝑘𝑚  

– Fix consistent assignments 𝑥, 𝑦 with 
same colour frequencies 𝜌 on clones 

– Independent bijections 𝒈𝑧 for 𝑧 ∈ 𝑞  

– Independent weights per factor 𝑎 

RN derivative 𝜓 ↦ 𝜓 𝑦𝑎 /𝔼 𝝍𝑘𝑎 𝑦𝑎   

with respect to 𝝍𝑘𝑎  

– Resulting factor graph is 𝑮𝑡
∗ 𝑥, 𝑦  

– Facilitates coupling and concentration proofs 

– Requires discussion of colour frequencies under 𝒙∗ and 𝒙 𝑡 
→ Convergence to normal centered at 𝑢 𝑞  in both cases 

– Requires discussion of assignment frequencies under 
𝒙∗, 𝒚𝑡 𝒙∗  and 𝒙 𝑡 , 𝒚𝑡 𝒙 𝑡  (given colour frequencies) 

– Canonically translates to cavity model 
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 𝜓3 

  𝜌 = 1
12 3,5,4  
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Proof Overview 

Inference and Mutual Information – Proof 

• Ground Truth Assignments 

– Fix degrees 𝑡 = 𝑚, 𝑑1, … , 𝑑𝑛, 𝑘1, … , 𝑘𝑚  

– Fix (valid) colour frequencies 𝜌 ∈ 𝒫 𝑞  
Controlled by LLT (for both 𝒙∗ and 𝒙 𝑡) 

– Assignments 𝒙𝑡,𝜌
∗  and 𝒚𝑡,𝜌

∗ = 𝒚𝑡 𝒙𝑡,𝜌
∗  

given 𝑡 and 𝜌 are independent 
So are the Nishimori versions 𝒙 𝑡,𝜌 and 𝒚 𝑡,𝜌 

–  𝒙𝑡,𝜌
∗  and 𝒙 𝑡,𝜌 have the same law 

– Counterpart 𝒚𝑡 = 𝒚𝑡,1, … , 𝒚𝑡,𝑚  to 𝒙∗ 

given by ℙ 𝒚𝑡,𝑎 = 𝑦 =
𝔼 𝝍𝑘𝑎 𝑦

 𝔼 𝝍𝑘𝑎 𝑦′𝑦′
 for each factor 𝑎 independently 

– Colour frequencies of 𝒚𝑡 concentrate around 𝑢 𝑞  since 𝝍𝑘‘s are balanced 

– Both 𝒚𝑡,𝜌
∗  and 𝒚 𝑡,𝜌 have the same law as 𝒚𝑡,𝜌 

– Canonically translates to cavity model 
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• Conclusion 

– Control 𝒕, fix degree sequences 𝑡 = 𝑚, 𝑑1, … , 𝑑𝑛, 𝑘1, … , 𝑘𝑚  

– Control 𝝆𝑡
∗ and 𝝆 𝑡, fix colour frequencies 𝜌 

– Control assignments 𝒙𝑡,𝜌
∗  and 𝒚𝑡,𝜌, fix 𝑥 and 𝑦 

– Use independence of the components of 𝑮𝑡
∗ 𝑥, 𝑦  to control the 

free entropy density, mutual information per variable, … 

 

• Next Steps 
– Weaken/remove assumptions used for convenience 

– Work towards zero temperature limit 

– Consider unbalanced problems 

– Strengthen connections to RSB theory 



 

 

 

 

 

Thank you! 
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