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Let g be a function overA.

In this presentation we are interested in evaluating exactly or approximately

expressions like
Z ,

∑

a∈A

g(a) .

If g : A → R≥0 then evaluatingZ is in general non-trivial.

However, thanks to g(a) ≥ 0, the terms in the above summation

“add up constructively”

and so good approximations are often possible.

If g : A → C then evaluatingZ is even more challenging in general.

In particular, because the real and the imaginary part of g(a) can be both

positive and negative, the terms in the above summation

“add up constructively and destructively.”
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(
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)
(1− α)n−ℓαℓ .

(Of course, in this particular case, we can easily evaluateZn exactly. Namely,

Zn = ((1− α) + α)n = 1n = 1 .

The point of this example is to discuss bounding techniques that are more broadly applicable.)

Let us define the following notation:

Ln , {0, 1, . . . , n}.

cn,ℓ ,

(
n

ℓ

)
(1− α)n−ℓαℓ, ℓ ∈ Ln.

With this,

Zn ,
∑

ℓ∈Ln

cn,ℓ .
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1

n
· log(Zn) ≤

log(n+1)

n
+ max
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1

n
· log(cn,ℓ) .

Therefore, we can get a good approximation ofZn

by finding the largest term in the summation.

In particular, in the limit n→ ∞, we obtain

lim
n→∞

1

n
· log(Zn) = lim

n→∞
max
ℓ∈Ln

1

n
· log(cn,ℓ) .
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Example (continued): Let us first consider the case α ∈ Rwith 0 ≤ α ≤ 1.

Let h(α) , −α · log(α)− (1−α) · log(1−α) be the binary entropy function.

For simplicity of exposition, assume that nα ∈ Z≥0. Because

max
ℓ∈Ln

cn,ℓ = cn,ℓ
∣∣
ℓ=αn

=

(
n

nα

)
(1− α)n(1−α)αnα

= exp
(
nh(α) + o(n)

)
· exp
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−nh(α)

)

= exp(o(n)) ,

we get
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· log(Zn) ≤

log(n+1)
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.
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Example (continued): Let us first consider the case α ∈ Rwith 0 ≤ α ≤ 1.

Let h(α) , −α · log(α)− (1−α) · log(1−α) be the binary entropy function.

For simplicity of exposition, assume that nα ∈ Z≥0. Because

max
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∣∣
ℓ=αn

=

(
n
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)
(1− α)n(1−α)αnα

= exp
(
nh(α) + o(n)

)
· exp

(
−nh(α)

)

= exp(o(n)) ,

we get

o(n)

n
≤

1

n
· log(Zn) ≤

log(n+1)

n
+
o(n)

n
.

In particular, in the limit n→ ∞, we obtain

lim
n→∞

1

n
· log(Zn) = 0 .
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Example (continued): Let us now consider the case α ∈ Rwith α < 0.

Terms cn,ℓ appearing in the sum

Zn =
n∑
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The term with largest magnitude does not even give the correct sign ofZn.
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R. P. Feynman

QED: The Strange Theory of Light and Matter

Princeton Science Library



Motivation

24 October 2019: Google publishes a paper claiming quantum supremacy
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Standard normal factor graphs (S-NFG):

Basics

A combinatorial interpretation of the Bethe partition sum,

i.e., the Bethe approximation of the partition sum [known]

Double-edge normal factor graphs (DE-NFG):

Basics

A combinatorial interpretation of the Bethe partition sum,

i.e., the Bethe approximation of the partition sum [novel]

Conclusions / Outlook

This presentation is based on joint work with Yuwen HUANG (CUHK).

Y. Huang and P. O. Vontobel", “Characterizing the Bethe partition function of double-edge factor graphs via

graph covers,” ISIT 2020. [Longer version in preparation.]
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Standard Normal Factor Graph (S-NFG)

f2

Ae6

f3f1Ae1

Ae5

Ae2 Ae3 Ae4

Ae7

Ae8f4 f5

Global function:

g(a) ,
∏

f

f(af )

Partition sum:

Z ,
∑

a

g(a)

Assumption from here on:

f(af ) ≥ 0 ∀f , ∀af
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Z = exp
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Nice, but it does not yield any computational savings by itself.



Gibbs Free Energy
Function
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− log(Z)
FGibbs(p)
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p′

The Gibbs free energy function

FGibbs(p) , −
∑

a

pa · log
(
g(a)

)

+
∑

a

pa · log(pa).

is defined such that its minimal value is related to the partition function:

Z = exp

(
−min

p
FGibbs(p)

)
.

But it suggests other optimization schemes.
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Bethe Approximation

The Bethe approximation to the Gibbs free energy function yields such an

alternative optimization scheme.

This approximation is interesting because of the following theorem:

Theorem (Yedidia/Freeman/Weiss, 2000):

Fixed points of the sum-product algorithm (SPA)

correspond to

stationary points of the Bethe free energy function.

Definition:

We define the Bethe approximationZBethe of the partition sumZ to be

ZBethe , exp

(
−min

β
FBethe(β)

)
.
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Bethe Approximation

Primal formulation:

ZBethe = exp

(
−min

β
FBethe(β)

)
.

Pseudo-dual formulation:

ZBethe = max
SPA messages
fixed point µ

∏
f∈F Zf (µ)∏
e∈Efull

Ze(µ)
,

where

Zf (µ) ,
∑

af

f(af ) ·
∏

e∈∂f

µe→f (af,e) , f ∈ F ,

Ze(µ) ,
∑

ae

µe→f (ae) · µe→f ′(ae) , e = (f, f ′) ∈ Efull .
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Bethe Approximation

This talk it about better understanding approximations given by the

Bethe approximation / SPA for factor graphs.

Some areas where factor graphs and the Bethe approximation / SPA have

turned out to be useful:

Low-density parity-check (LDPC) and turbo codes.

Counting patterns in constrained coding.

Some image processing tasks.

(E.g., early vision problems such as stereo, optical flow, and image restoration.)

Estimating the permanent of a non-negative matrix.

Pattern maximum likelihood (PML) estimate.

(PML estimate: estimating sorted p.m.f.s based on relatively few samples.)

Etc.
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and its Bethe approximation
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Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Note: the above graph has 2! · 2! · 2! · 2! · 2! = (2!)5 double covers.



Graph Covers

original graph double cover of triple cover of
(a possible)

the original graph the original graph

(a possible)

· · ·

Besides double covers, a graph also has many triple covers, quadruple

covers, quintuple covers, etc.



Graph Covers

original graph
(possible)

m-fold cover of
original graph

· · ·

· · · · · ·

· · ·

m

π2 π3

π1

π5

π4

Anm-fold cover is also called a cover of degreem.

Do not confuse this degree with the degree of a vertex!
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Graph Cover Hierarchy

M Number ofM-fold covers

1 (1!)Efull

2 (2!)Efull

3 (3!)Efull



Graph Covers

Graph covers (a.k.a. graph lifts) have appeared in various contexts in

the literature:

D. Angluin (STOC 1980):

Local and global properties in networks of processors.

N. Linial et al.:

Various papers on characterizing properties of graph covers.

A. Marcus, D. A. Spielman, and N. Srivastava (FOCS 2013):

have shown the existence of infinite families of regular bipartite

Ramanujan graphs of every degree bigger than 2.

Graph covers in coding theory:

Koetter and Vontobel (ISTC 2003):

analysis of message-passing iterative decoders via graph covers.
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Z(Ñ)

〉
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A Combinatorial Interpretation
of the Bethe Partition Sum

Definition:

LetN be a factor graph.

LetM ∈ Z>0.

We define the degree-M Bethe partition sum to be

ZBethe,M(N) , M

√〈
Z(Ñ)

〉
Ñ∈ÑM

.

Note that the RHS of the above expression is based on the partition sum,

and not on the Bethe partition sum.
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Ñ∈ÑM



Degree-M Bethe Partition Sum

ZBethe,M(N)
∣∣
M→∞

= ZBethe(N) (Theorem [V., 2013])
∣∣∣

ZBethe,M(N)
∣∣∣

ZBethe,M(N)
∣∣
M=1

= Z(N)

ZBethe,M(N) , M

√〈
Z(Ñ)

〉
Ñ∈ÑM
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Ñ∈ÑM
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Example 2: 5-Cycle

A2A5

A1

f34

f51 f12

f45 f23

A3A4

LetAe , {0, 1} for all e ∈ E .

With the local function f(ae, ae+1),

we can associate the matrix

Mf =


f(0, 0) f(0, 1)

f(1, 0) f(1, 1)


 .

We assume thatMf = M for all f ,

whereM has

non-negative entries,

real eigenvalues λ1 and λ2 such

that λ1 ≥ |λ2| ≥ 0.



Example 2: 5-Cycle

A2A5

A1

f34

f51 f12

f45 f23

A3A4



Example 2: 5-Cycle

A2A5

A1

f34

f51 f12

f45 f23

A3A4

Partition sum:

Z(N) = trace(M5) = λ5
1 + λ5

2.



Example 2: 5-Cycle

A2A5

A1

f34

f51 f12

f45 f23

A3A4

Partition sum:

Z(N) = trace(M5) = λ5
1 + λ5

2.

Degree-2 Bethe partition sum:

ZBethe,2(N) =
2

√
λ10
1 + λ5

1λ
5
2 + λ10

2 .



Example 2: 5-Cycle

A2A5

A1

f34

f51 f12

f45 f23

A3A4

Partition sum:

Z(N) = trace(M5) = λ5
1 + λ5

2.

Degree-2 Bethe partition sum:

ZBethe,2(N) =
2

√
λ10
1 + λ5

1λ
5
2 + λ10

2 .

Degree-M Bethe partition sum:

ZBethe,M(N) = M

√√√√
M∑

m=0

λ
5(M−m)
1 λ5m

2 .



Example 2: 5-Cycle

A2A5

A1

f34

f51 f12

f45 f23

A3A4

Partition sum:

Z(N) = trace(M5) = λ5
1 + λ5

2.

Degree-2 Bethe partition sum:

ZBethe,2(N) =
2

√
λ10
1 + λ5

1λ
5
2 + λ10

2 .

Degree-M Bethe partition sum:

ZBethe,M(N) = M

√√√√
M∑

m=0

λ
5(M−m)
1 λ5m

2 .

Bethe partition sum:

ZBethe(N) = λ5
1.



Log-Supermodular NFGs

Theorem 1 [Ruozzi 2012]
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Log-Supermodular NFGs

Theorem 1 [Ruozzi 2012]

LetN be a binary log-supermodular NFG. LetM ≥ 1. Then for anyM-cover Ñ ofN it

holds that

Z(Ñ) ≤ Z(N)M .

Theorem 2 [Ruozzi 2012]

LetN be a binary log-supermodular factor graph. Then

ZBethe(N) ≤ Z(N).

Proof of Theorem 2:

ZBethe(N) = lim sup
M→∞

ZBethe,M (N)

= lim sup
M→∞

M

√〈
Z(Ñ)

〉

Ñ∈ÑM

≤ lim sup
M→∞

M

√〈
Z(N)M

〉

Ñ∈ÑM

= Z(N).



Double-edge normal factor graphs (DE-NFGs)



Motivation for DE-NFGs: Part 1

(unitary evolutions andmeasurements)



Motivation for DE-NFGs

y1 y2

x0

x′0

x2

x1

x3 x5

x4

x6

x7

x′7

x′6

x′4

x′5x′3

x′1

x′2

ρ

U0

UH
0

=

M1,y

MH

1,y

U1

UH
1

=

M2,y

MH

2,y

=

U2

UH
2

The above graphical model is an NFG that can be used to represent probabilities of

interest in quantum information processing [Loeliger and Vontobel, ISIT 2012 and T-IT 2017].

Here:

1. A system is prepared in some state.

2. The system evolves unitarily.

3. Part of the system ismeasured.→ Outcome y1.

4. The system evolves unitarily.

5. Part of the system ismeasured.→ Outcome y2.

6. The system evolves unitarily.

Pr(Y1=y1, Y2=y2) = e(y1, y2)



From an NFG to a DE-NFG

y1 y2

x0

x′0

x2

x1

x3 x5

x4

x6

x7

x′7

x′6

x′4

x′5x′3

x′1

x′2

ρ

U0

UH
0

=

M1,y

MH

1,y

U1

UH
1

=

M2,y

MH

2,y

=

U2

UH
2

After grouping pairs of blue variables and closing-the-box around

suitable collections of function nodes, we obtain a graphical model that we call a

double-edge normal factor graph (DE-NFG).

(x1, x
′

1)

y1 y2

(x0, x
′

0)

(x4, x
′

4)

(x2, x
′

2) (x3, x
′

3) (x5, x
′

5) (x6, x
′

6)

(x7, x
′

7)
ρ Ũ0

M̃1

Ũ1

M̃2

Ũ2
I



Motivation for DE-NFGs: Part 2

(quantum teleportation)



Quantum Teleportation
Setup:

Assume that Alice has a qubit (Qubit 1) in state ρ.

Assume that Alice and Bob share an EPR pair (Alice: Qubit 2; Bob: Qubit 3).

Assume that Alice wants to transmit the state of Qubit 1 (i.e., ρ) to Bob.

However she is only allowed to use a classical channel, i.e., the Qubit 1 cannot

be sent via some quantum channel to Bob.
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be sent via some quantum channel to Bob.

Approach:

Alice does some suitable operations and measurements on Qubits 1 and 2.

Let the measurement results bem1,m2 ∈ {0, 1}.

Alice transmits the measurement resultsm1 andm2 to Bob.

Based onm1 andm2, Bob performs some operations on Qubit 3.

In the end, Qubit 3will be in state ρ.



Quantum Teleportation
Setup:

Assume that Alice has a qubit (Qubit 1) in state ρ.

Assume that Alice and Bob share an EPR pair (Alice: Qubit 2; Bob: Qubit 3).

Assume that Alice wants to transmit the state of Qubit 1 (i.e., ρ) to Bob.

However she is only allowed to use a classical channel, i.e., the Qubit 1 cannot

be sent via some quantum channel to Bob.

Approach:

Alice does some suitable operations and measurements on Qubits 1 and 2.

Let the measurement results bem1,m2 ∈ {0, 1}.

Alice transmits the measurement resultsm1 andm2 to Bob.

Based onm1 andm2, Bob performs some operations on Qubit 3.

In the end, Qubit 3will be in state ρ.

The following slides use DE-NFGs to show that the state of Qubit 3 is indeed ρ.
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Quantum Teleportation

m1

m2

ρ

Xm2

=

Zm1

Xm2

Zm1

(Proportionality constants have been omitted.)



Definition of DE-NFGs



Definition of a DE-NFG

Definition: Consider the factorization

g(x,x′;y) =
∏

f∈F

f(x∂f ,x
′
∂f ;yδf )

represented by some DE-NFG. We will use the following conventions:

We call g the global function.

We call f ∈ F the local functions.

For every function node f ∈ F , the variables associated with the

incident double-edges are collected in x∂f ,x
′
∂f .

For every function node f ∈ F , the variables associated with the

incident single-edges are collected in yδf .

(continued on next slide)



Definition of a DE-NFG

Definition (continued):

Most importantly, we require every local function f ∈ F to have the following

property:

for every yδf , the squarematrix
(
f(x∂f ,x

′
∂f ;yδf )

)
x∂f ,x

′

∂f

with row indices x∂f and column indices x′
∂f is a

complex-valued, hermitian, positive semi-definite (PSD) matrix.

Equivalently,

for every yδf , the function f(x∂f ,x
′
∂f ;yδf ) is a

complex-valued, hermitian, positive semi-definite kernel function.

When a function node f has no incident double edges, then the above

condition has to be understood as requiring the local function f to take on only

non-negative real values.



Properties of DE-NFGs



The Partition Sum of a DE-NFG

Definition: Consider some DE-NFG. The partition sum associated with

this DE-NFG is defined to be

Z ,
∑

x,x′,y

g(x,x′;y) .



The Partition Sum of a DE-NFG

Definition: Consider some DE-NFG. The partition sum associated with

this DE-NFG is defined to be

Z ,
∑

x,x′,y

g(x,x′;y) .

Proposition:

The partition sum of a DE-NFG is a non-negative real number.



Sum-Product Algorithm for DE-NFGs
Assumptions: Wemake the following assumptions about the initial messages, i.e.,

about the messages at time t = 0:

Messages along single-edges are

positive real-valued functions.

Messages along double-edges are

complex-valued, hermitian, positive definite kernel functions.



Sum-Product Algorithm for DE-NFGs
Assumptions: Wemake the following assumptions about the initial messages, i.e.,

about the messages at time t = 0:

Messages along single-edges are

positive real-valued functions.

Messages along double-edges are

complex-valued, hermitian, positive definite kernel functions.

Proposition: Let the messages be initialized as specified above.

Then for every iteration t ≥ 1 it holds that:

Messages along single-edges are

non-negative real-valued functions.

Messages along double-edges are

complex-valued, hermitian, positive semi-definite kernel functions.



Reminder: Bethe Approx. for S-NFGs

Primal formulation:

ZBethe , exp

(
−min

β
FBethe(β)

)
.

Pseudo-dual formulation:

ZBethe = max
SPA messages
fixed point µ

∏
f∈F Zf (µ)∏
e∈Efull

Ze(µ)
,

where

Zf (µ) ,
∑

af

f(af ) ·
∏

e∈∂f

µe→f (af,e) , f ∈ F ,

Ze(µ) ,
∑

ae

µe→f (ae) · µe→f ′(ae) , e = (f, f ′) ∈ Efull .
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Reminder: Bethe Approx. for S-NFGs

Primal formulation:

ZBethe , exp

(
−min

β
FBethe(β)

)
.


 generalization to

DE-NFGs unclear




Pseudo-dual formulation:

ZBethe = max
SPA messages
fixed point µ

∏
f∈F Zf (µ)∏
e∈Efull

Ze(µ)
,


 generalization to

DE-NFGs straightforward




where

Zf (µ) ,
∑

af

f(af ) ·
∏

e∈∂f

µe→f (af,e) , f ∈ F ,

Ze(µ) ,
∑

ae

µe→f (ae) · µe→f ′(ae) , e = (f, f ′) ∈ Efull .



The Bethe Partition Sum of a DE-NFG
Definition: Consider a collection of SPA messagesµ = {µe→f}f∈F,e∈N (f), i.e., one

message for every edge in both directions. Let

ZBethe(µ) ,

∏
f∈F Zf (µ)∏
e∈Efull

Ze(µ)
,

where

for every f ∈ F we define

Zf (µ) ,
∑

x∂f ,x
′

∂f
,yδf

f(x∂f ,x
′
∂f ;yδf ) ·




∏

e∈∂f

µe→f (xe, x
′
e)


 ·




∏

e∈δf

µe→f (ye)


 ,

for every single-edge e = (f, f ′) ∈ E we define

Ze(µ) ,
∑

ye

µe→f (ye) · µe→f ′(ye) ,

for every double-edge e = (f, f ′) ∈ E we define

Ze(µ) ,
∑

xe, x′

e

µe→f (xe, x
′
e) · µe→f ′(xe, x

′
e) .



The Bethe Partition Sum of a DE-NFG

Proposition:

The functionZBethe(µ) in previous definition has the following properties:
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The functionZBethe(µ) in previous definition has the following properties:

Assume

that messages have the properties listed in the previous proposition;

thatZBethe(µ) is well-defined, i.e.,Ze(µ) 6= 0 for all e ∈ E .

Then

ZBethe(µ) is a non-negative real number.



The Bethe Partition Sum of a DE-NFG

Proposition:

The functionZBethe(µ) in previous definition has the following properties:

Assume

that messages have the properties listed in the previous proposition;

thatZBethe(µ) is well-defined, i.e.,Ze(µ) 6= 0 for all e ∈ E .

Then

ZBethe(µ) is a non-negative real number.

Fixed points of the SPA =̂ stationary points of the function

ZBethe(µ). (This generalizes a theorem by Yedidia, Freeman, and Weiss.)



Examples of DE-NFGs



DE-NFG Example 1

x̃0

f3 f0

f2 f1

x̃1x̃3

x̃2

Setup for simulation results:

n = 4 ; |X | = 2 ; 106 experiments.

F , U ·D ·UH is randomly generated according to the following: procedure:

whereU is a randomly generated unitary matrix (Haar measure),

whereD is a diagonal matrix with i.i.d. diagonal entries sampled from a

standard χ2 distribution with one degree of freedom.



DE-NFG Example 2

x̃0

f3 f0

f2 f1

x̃2

x̃1x̃3 x̃4

Setup for simulation results:

|X | = 2 ; 106 experiments.

For every instantiation, all local functions are generated independently.

(This is In contrast to Example 1, where for every instantiation all local function were the same.)



DE-NFG Example 3
Consider a certain type of quantum computer based on linear optics proposed

by Aaronson and Arkhipov (2013).

Probabilities that appear in that paper can be written as the partition sum of

suitable DE-NFGs.

Here we consider DE-NFGS that are generalizations of these DE-NFGs.

These DE-NFGs are also generalizations of NFGs that appear when

(approximately) computing permanents of matrices.

f̃Li

f̃Rj

x̃Li,j

f̃i,j x̃Ri,j



A combinatorial interpretation

of the Bethe partition sum



Reminder: ZBethe for S-NFGs

Does a similar theorem hold for DE-NFGs?

ZBethe,M(N)
∣∣
M→∞

= ZBethe(N) (Theorem [V., 2013])
∣∣∣

ZBethe,M(N)
∣∣∣

ZBethe,M(N)
∣∣
M=1

= Z(N)

ZBethe,M(N) , M

√〈
Z(Ñ)

〉
Ñ∈ÑM
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Reminder: ZBethe for S-NFGs

Problem: the proof for S-NFGs (based on themethod of types)

does not generalize to DE-NFGs.

ZBethe,M(N)
∣∣
M→∞

= ZBethe(N) (Theorem [V., 2013])
∣∣∣

ZBethe,M(N)
∣∣∣

ZBethe,M(N)
∣∣
M=1

= Z(N)

ZBethe,M(N) , M

√〈
Z(Ñ)

〉
Ñ∈ÑM



Symmetric-subspace transform (SST)
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Assume that some part of our S-NFGN looks like this:

f1 f2Ae



Symmetric-Subspace Transform
Assume that some part of our S-NFGN looks like this:

f1 f2Ae

In the following, for simplicity, we assume that all variable alphabets are {0, 1}.



Symmetric-Subspace Transform

Let Ñ be arbitrary double cover ofN.

The corresponding part of Ñwill either look like this

f1,1

f1,2

f2,1

f2,2

or like this

f1,1

f1,2

f2,1

f2,2



Symmetric-Subspace Transform
Independently of what the double cover looks like, its partition sum is equal to the

partition sum of the following NFG

f1,1

f1,2

f2,1

f2,2

Ẽe

Ãf1,e,1 Ãf2,e,1

Ãe,s

Ãf2,e,2Ãf1,e,2

f̃e,s

with suitably chosen function nodes.



Symmetric-Subspace Transform
Independently of what the double cover looks like, its partition sum is equal to the

partition sum of the following NFG

f1,1

f1,2

f2,1

f2,2

Ẽe

Ãf1,e,1 Ãf2,e,1

Ãe,s

Ãf2,e,2Ãf1,e,2

f̃e,s

with suitably chosen function nodes.

In particular, the matrices associated with

Ẽe
(
(ãf1,e,1, ãf1,e,2), (ãf2,e,1, ãf2,e,2), ãe,s=0

)
,

Ẽe
(
(ãf1,e,1, ãf1,e,2), (ãf2,e,1, ãf2,e,2), ãe,s=1

)

are, respectively,

Ẽnocross ,




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 , Ẽcross ,




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 .



Symmetric-Subspace Transform
Independently of what the double cover looks like, its partition sum is equal to the

partition sum of the following NFG

f1,1

f1,2

f2,1

f2,2

Ẽe

Ãf1,e,1 Ãf2,e,1

Ãe,s

Ãf2,e,2Ãf1,e,2

f̃e,s

with suitably chosen function nodes.

Moreover, we defined

f̃e,s(0) , 1, f̃e,s(1) , 0 (no crossing),

f̃e,s(0) , 0, f̃e,s(1) , 1 (crossing).



Symmetric-Subspace Transform

Note that

Ẽavg ,
1

2
· Ẽnocross +

1

2
· Ẽcross

=
1

2
·




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




+
1

2
·




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




=




1 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 1






Symmetric-Subspace Transform
Let

ψ ,


ψ0

ψ1


 ∈ C

2 .

It follows that

ψ⊗2 = ψ ⊗ψ =




ψ0 · ψ0

ψ0 · ψ1

ψ1 · ψ0

ψ1 · ψ1



.



Symmetric-Subspace Transform

Assume thatψ is uniformly distributed among all vectors inC2 of length one.

Then consider the matrix

M , E
[
ψ⊗2 ·

(
ψ⊗2

)H]

Claim:

M ∝




1 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 1






Symmetric-Subspace Transform

M =




E
[
ψ0 · ψ0 · ψ0 · ψ0

]
E
[
ψ0 · ψ0 · ψ0 · ψ1

]
E
[
ψ0 · ψ0 · ψ1 · ψ0

]
E
[
ψ0 · ψ0 · ψ1 · ψ1

]

E
[
ψ0 · ψ0 · ψ0 · ψ0

]
E
[
ψ0 · ψ1 · ψ0 · ψ1

]
E
[
ψ0 · ψ1 · ψ1 · ψ0

]
E
[
ψ0 · ψ1 · ψ1 · ψ1

]

E
[
ψ1 · ψ0 · ψ0 · ψ0

]
E
[
ψ1 · ψ0 · ψ0 · ψ1

]
E
[
ψ1 · ψ0 · ψ1 · ψ0

]
E
[
ψ1 · ψ0 · ψ1 · ψ1

]

E
[
ψ1 · ψ1 · ψ0 · ψ0

]
E
[
ψ1 · ψ1 · ψ0 · ψ1

]
E
[
ψ1 · ψ1 · ψ1 · ψ0

]
E
[
ψ1 · ψ1 · ψ1 · ψ1

]






Symmetric-Subspace Transform

M =




E
[
|ψ0|4

]
E
[
|ψ0|2 · ψ0 · ψ1

]
E
[
|ψ0|2 · ψ0 · ψ1

]
E
[
ψ2
0 · ψ1

2
]

E
[
|ψ0|2 · ψ0 · ψ1

]
E
[
|ψ0|2 · |ψ1|2

]
E
[
|ψ0|2 · |ψ1|2

]
E
[
ψ0 · |ψ1|2 · ψ1

]

E
[
|ψ0|2 · ψ0 · ψ1

]
E
[
|ψ0|2 · |ψ1|2

]
E
[
|ψ0|2 · |ψ1|2

]
E
[
ψ0 · |ψ1|2 · ψ1

]

E
[
ψ0

2
· ψ2

1

]
E
[
ψ0 · |ψ1|2 · ψ1

]
E
[
ψ0 · |ψ1|2 · ψ1

]
E
[
|ψ1|4

]






Symmetric-Subspace Transform

M ∝




1 0 0 0

0 1
2

1
2

0

0 1
2

1
2

0

0 0 0 1






Symmetric-Subspace Transform

f1,1

f1,2

f2,1

f2,2

Ẽe

Ãf1,e,1 Ãf2,e,1

Ãe,s

Ãf2,e,2Ãf1,e,2

f̃e,s



Symmetric-Subspace Transform

f1,1

f1,2

f2,1

f2,2

Ẽe

Ãf1,e,1 Ãf2,e,1

Ãe,s

Ãf2,e,2Ãf1,e,2

f̃e,s

Using the above observation (omitting some proportionality constant):

f1,1

f1,2

f2,1

f2,2

pψe

=

=

Ãf1,e,1

Ãf1,e,2 Ãf2,e,2

Ãf2,e,1

ψe

ψe ψe

ψe
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f1,1

f1,2

f2,1

f2,2

Ẽe

Ãf1,e,1 Ãf2,e,1

Ãe,s

Ãf2,e,2Ãf1,e,2

f̃e,s

Using the above observation (omitting some proportionality constant):

f1,1

f1,2

f2,1

f2,2

pψe

=

=

Ãf1,e,1

Ãf1,e,2 Ãf2,e,2

Ãf2,e,1

ψe

ψe ψe

ψe

After conditioning on ψ (omitting some proportionality constant):

f1,1

f1,2

f2,1

f2,2

Ãf1,e,1

Ãf1,e,2 Ãf2,e,2

Ãf2,e,1

ψe ψe

ψe ψe



Symmetric-Subspace Transform
The above considerations show that

ZBethe,M (N) = M

√
αN,M ·

∫
Re

((
gSST(ψ)

)M)
dµFS(ψ) .
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)M)
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For DE-NFGs satisfying an (easily checkable) condition, we can use the Laplace

method to analyze the above expression and show that

lim sup
M→∞

ZBethe,M (N) = ZBethe(N) .



Symmetric-Subspace Transform
The above considerations show that

ZBethe,M (N) = M

√
αN,M ·

∫
Re

((
gSST(ψ)

)M)
dµFS(ψ) .

For DE-NFGs satisfying an (easily checkable) condition, we can use the Laplace

method to analyze the above expression and show that

lim sup
M→∞

ZBethe,M (N) = ZBethe(N) .

Actually, in order to obtain the above result, we also need to apply the so-called

loop-calculus transform by Chertkov and Charnyak before applying the SST.
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Conclusions / Outlook

Standard normal factor graphs (S-NFG):

Basics

A combinatorial interpretation of the Bethe partition sum,

i.e., the Bethe approximation of the partition sum [known]

Double-edge normal factor graphs (DE-NFG):

Basics

A combinatorial interpretation of the Bethe partition sum,

i.e., the Bethe approximation of the partition sum [novel]

Y. Huang and P. O. Vontobel", “Characterizing the Bethe partition function of double-edge factor graphs via

graph covers,” ISIT 2020. [Longer version in preparation.]



Thank you!
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