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Robert Dorfman's paper in 1943 introduced the field of (Combinatorial) Group Testing. The motivation arose 
during the Second World War when the United States Public Health Service and the Selective service 
embarked upon a large scale project. The objective was to weed out all syphilitic men called up for induction. 
However, syphilis testing back then was expensive and testing every soldier individually would have been very 
cost heavy and inefficient.  

We can combine blood samples and test a combined sample together to check if at least one soldier has 
syphilis.

Group Testing
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Detecting the Defective items
Determining the Number of Defective items
Estimate the Number of Defective items

Many other applications

Soldiers   Items⇒
Sick soldiers   defective items⇒
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Group Testing

R. Monte Carlo

R. Las Vegas

R. MC+Expected
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Polynomial
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Algorithm Lower Bound Upper Bound

Detecting the Defective items

Schlaghoff and Triesch 2005 and Cheng et al. 2014, 2015 and many others

Adaptive Deterministic or 
Randomized (poly)

A.G. D’yachkov, V.V. Rykov 1982 Porat and Rothschild 2011

Non-Adaptive Deterministic 
(poly)

Folklore Result

Non-Adaptive Randomized MC 
(poly)

A. De Bonis, L. Gasieniec, U. Vaccaro 2005

Two-round Deterministic (exp)

M. Cheraghchi 2013

Two-round Deterministic (poly)
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 tests  tests 𝑛 → 𝑑log𝑛 − 𝑑2log𝑛

     #items𝑛
     #defective items𝑑



Algorithm Lower Bound Upper Bound

Determining the Number of Defective items

Cheng.  2011

Adaptive MC Rand. 

Bshouty, Bshouty-Hurani, Haddad, Hashem, Khoury, Sharafy 2018

Adaptive Deterministic or LV 
Rand. 

Damaschke and Sheikh Muhammad 2009

Non-Adaptive Deterministic 

Bshouty, Haddad-Zaknoon, Boulos, Moalem, Nada, Noufi, Zaknoon 2020

Adaptive MC Rand. 
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Bshouty 2019

Non-Adaptive MC and LV



Algorithm Lower Bound Upper Bound

Determining the Number of Defective items

Cheng.  2011

Adaptive MC Rand. 

Bshouty, Bshouty-Hurani, Haddad, Hashem, Khoury, Sharafy 2018

Adaptive Deterministic or LV 
Rand. 

Damaschke and Sheikh Muhammad 2009

Non-Adaptive Deterministic 

Bshouty, Haddad-Zaknoon, Boulos, Moalem, Nada, Noufi, Zaknoon 2020

Adaptive MC Rand. 
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Bshouty 2019

Non-Adaptive MC and LV
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Monte Carlo Adaptive – Upper Bound 
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OPEN PROBLEMS

R. Monte Carlo

R. Las Vegas

R. MC+Expected

Linear (n)

Polynomial

Exponential
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Estimating the Number of Defective items

Algorithm Lower Bound Upper Bound

𝑑/Δ ≤ 𝑥 ≤ Δ𝑑

Bshouty 2019
Non-Adaptive Deterministic or LV Rand.

Bshouty 2019
Non-Adaptive MC Rand. 

Damaschke and Sheikh Muhammad 2010
Non-Adaptive MC Rand.
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Δ = 1 + Ω(1)
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Estimating the Number of Defective items  
Given some upper bound 𝒅 ≤ 𝑫

𝑑/Δ ≤ 𝑥 ≤ Δ𝑑

Algorithm Lower Bound Upper Bound

Bshouty 2019
Non-Adaptive MC Rand. 

Damaschke and Sheikh Muhammad 2010
Non-Adaptive MC Rand.
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Estimating the Number of Defective items  
Given some upper bound 𝒅 ≤ 𝑫 𝑑/Δ ≤ 𝑥 ≤ Δ𝑑

Deterministic 
Bshouty Haddad-Zaknoon 2020



Estimate the Number of Defective items

Algorithm Lower Bound Upper Bound

Cheng and Xu (2014)
Adaptive Rand. MC with 

(1 − 𝜖)𝑑 ≤ 𝑌 ≤ (1 + 𝜖)𝑑

Falahatgar et al. (2016)
Adaptive Randomized MC  
+ Expected number queries

Ron and Tsur (2014)
Adaptive Rand. MC with  
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Algorithm Lower Bound Upper Bound

Cheng and Xu (2014)
Adaptive Randomized MC with  

Ron and Tsur (2014)
Adaptive Randomized MC with 

  

Falahatgar et al. (2016)
Adaptive Randomized MC + 
Expected number of queries

Adaptive Randomized MC 

Adaptive Randomized MC + 
Expected number of queries

Adaptive Deterministic and Las 
Vegas 

Bshouty, Bshouty-Hurani, Haddad, Hashem, Khoury, Sharafy 2018
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Algorithm Lower Bound Upper Bound

Cheng and Xu (2014)
Adaptive Randomized MC with  

Ron and Tsur (2014)
Adaptive Randomized MC with 

  

Falahatgar et al. (2016)
Adaptive Randomized MC + 
Expected number of queries

Adaptive Randomized MC 

Adaptive Randomized MC + 
Expected number of queries

Adaptive Deterministic and Las 
Vegas 

Bshouty, Bshouty-Hurani, Haddad, Hashem, Khoury, Sharafy 2018
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0 𝑛

1
1 − 𝜖

    sets(1 − 𝜖)𝑛

𝑑log
(1 − 𝜖)𝑛

𝑑

𝑌 𝑌 ≤ 𝑑 𝑌 ≥ (1 − 𝜖)𝑑

(1 − 𝜖)𝑑 ≤ 𝑌 ≤ 𝑑

Deterministic Adaptive – Upper Bound 

𝑑

Schlaghoff and Triesch 2005  
and Cheng et al. 2014, 2015
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𝑑log
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Algorithm Lower Bound Upper Bound

Cheng and Xu (2014)
Adaptive Randomized MC with  

Ron and Tsur (2014)
Adaptive Randomized MC with 

  

Falahatgar et al. (2016)
Adaptive Randomized MC + 
Expected number of queries

Adaptive Randomized MC 

Adaptive Randomized MC + 
Expected number of queries

Adaptive Deterministic and Las 
Vegas 

Bshouty, Bshouty-Hurani, Haddad, Hashem, Khoury, Sharafy 2018
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(1 − 𝜖)𝑑 ≤ 𝑌 ≤ (1 + 𝜖)𝑑

|𝐼1 | ≤ 𝑑 𝐼2 ≥
1 + 𝜖
1 − 𝜖

(𝑑 + 1)

(               ) (               )
𝑌1 𝑌2

𝑌1 ≠ 𝑌2

   𝐽1, 𝐽2, 𝐽3, ⋯, 𝐽𝑘 𝐽𝑖 = 𝑑∪𝑘
𝑖=1 𝐽𝑖

∪𝑘
𝑖=1 𝐽𝑖 <

1 + 𝜖
1 − 𝜖

(𝑑 + 1)

𝑘 ≤
1 + 𝜖
1 − 𝜖 (𝑑 + 1) 

𝑑

(𝑛
𝑑)
𝑘

log
(𝑛

𝑑)
𝑘

= 𝑑 log
(1 − 𝜖)𝑛

𝑑

𝐸𝑥𝑝𝑒𝑐𝑡 = 𝑑 log
(1 − 𝜖)𝑛

𝑑

Yao MinMax Theorem

Adaptive Deterministic and Las Vegas – Lower Bound 
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OPEN PROBLEMS

Randomized MC + 
Expected number of queries

Randomized MC 

Thank You

Algorithm Lower Bound Upper Bound
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Randomized MC 
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Thank You



Algorithm Lower Bound Upper Bound

Cheng and Xu (2014)
Randomized MC with  

Ron and Tsur (2014)
Randomized MC with 

  

Falahatgar et al. (2016)
Randomized MC + 
Expected number of queries

Ours

Deterministic and Las Vegas 

Randomized MC + 
Expected number of queries
Randomized MC 
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Monte Carlo adaptive algorithm

𝑑 = 0 𝑑 = 𝑛

(1 − 𝜖)𝑑 ≤ 𝐷 ≤ (1 + 𝜖)𝑑

1
𝜖

1
𝜖

− 1

𝐼 𝐼 ∪ {𝑗}

0 𝑛

2
𝛿

𝐼 𝐼 ∪ {𝑗}
Success probability 

1
2

𝑀 =
1
2

2
𝛿
1
𝜖

log 𝑀 = Ω( 1
𝜖

log
1
𝛿
 )
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Algorithm Lower Bound Upper Bound

Cheng and Xu (2014)
Randomized MC with  

Ron and Tsur (2014)
Randomized MC with 

  

Falahatgar et al. (2016)
Randomized MC + 
Expected number of queries

Ours

Deterministic and Las Vegas 

Randomized MC + 
Expected number of queries
Randomized MC 
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0 𝑛𝑑 2𝑑
𝑑
2

𝑎𝑖 = 2𝑖
log𝑑

𝑎𝑖 = 22𝑖 𝑑
1
2 ≤ 𝐷1, 𝐷2 < 𝑑2

𝑏1 = (𝐷1𝐷2)1/2

loglog𝑑 loglog𝑑 2loglog𝑑

𝑎𝑖 = 22𝑖2

𝑑2−2 loglog𝑑 ≤ 𝐷1, 𝐷2 < 𝑑22 loglog𝑑

loglog𝑑

𝑏1 = (𝐷1𝐷2)1/2

loglog𝑑+ loglog𝑑 loglog𝑑

𝑑 𝑑/𝛿2𝛿2𝑑

+𝑂( 1
𝜖2

log
1
𝛿 )loglog𝑑 (1 − 𝛿)loglog𝑑 + 𝑂( 1

𝜖2
log

1
𝛿 )

Doubling technique

Falahatgar et al. (2016)

Ours
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