Bounds for Group Testing Algorithms to Determine the Number of Defectives

Nader H. Bshouty Technion

Group Testing

Robert Dorfman's paper in 1943 introduced the field of (Combinatorial) **Group Testing**. The motivation arose during the Second World War when the United States Public Health Service and the Selective service embarked upon a large scale project. The objective was to weed out all syphilitic men called up for induction. However, syphilis testing back then was expensive and testing every soldier individually would have been very cost heavy and inefficient.

We can combine blood samples and test a combined sample together to check if at least one soldier has syphilis.

 $x_1, x_2, x_3, x_4,$ Det $x_5, x_6, x_7, x_8,$ $x_9, x_{10}, x_{11}, x_{12}$ Esti $x_{13}, x_{14}, x_{15}, x_{16}$

Determining the Number of Defective items Estimate the Number of Defective items

Detecting the Defective items

Negative

0101

0101

1010

0101

Positive		
1101		
0110	1	
1101		
0101		

1

Many other applications Soldiers \Rightarrow Items Sick soldiers \Rightarrow defective items

- *n* #items
- d #defective items

 $f = x_3 \vee x_{10}$

0

n #items

Detecting the Defective items

<i>d</i> #defective items	
---------------------------	--

Algorithm	Lower Bound	Upper Bound
Schlaghoff and	Triesch 2005 and Cheng et al. 2014, 20	15 and many others
Adaptive Deterministic or Randomized (poly)		
	Folklore Result	
Non-Adaptive Randomized MC (poly)		
A.G. D'yachkov, V.V. Rykov 1982 Porat and Rothschild 2011		
Non-Adaptive Deterministic (poly)		
A. De Bonis, L. Gasieniec, U. Vaccaro 2005		
Two-round Deterministic (exp)		
M. Cheraghchi 2013		
Two-round Deterministic (poly)		

$$n \text{ tests } \rightarrow d \log n - d^2 \log n \text{ tests}$$

Determining the Number of Defective items

Algorithm	Lower Bound	Upper Bound
Cheng. 2011		
Adaptive MC Rand.		
Bshouty, Haddad-Zaknoon, Boulos, Moalem, Nada, Noufi, Zaknoon 2020		
Adaptive MC Rand.		

Bshouty, Bshouty-Hurani, Haddad, Hashem, Khoury, Sharafy 2018		
Adaptive Deterministic or LV Rand.		
Damaschke and Sheikh Muhammad 2009		
Non-Adaptive Deterministic		
	Bshouty 2019	
Non-Adaptive MC and LV		

Determining the Number of Defective items

Algorithm	Lower Bound	Upper Bound
	Cheng. 2011	
Adaptive MC Rand.		
Bshouty, Hadda	ad-Zaknoon, Boulos, Moalem, Nada, N	loufi, Zaknoon 2020
Adaptive MC Rand.		

Bshouty, Bshouty-Hurani, Haddad, Hashem, Khoury, Sharafy 2018		
Adaptive Deterministic or LV Rand.		
Damaschke and Sheikh Muhammad 2009		
Non-Adaptive Deterministic		
Bshouty 2019		
Non-Adaptive MC and LV		

Monte Carlo Adaptive – Upper Bound

Estimating the Number of Defective items

$d/\Delta \le x \le \Delta d$ $\Delta = 1 + \Omega(1)$

Algorithm	Lower Bound	Upper Bound
Damaschke and Sheikh Muhammad 2010		
Non-Adaptive MC Rand.		

	Bshouty 2019	
Non-Adaptive MC Rand.		

	Bshouty 2019	
Non-Adaptive Deterministic or LV Rand.		

Estimating the Number of Defective items Given some upper bound $d \leq D$ $d/\Delta \leq x \leq \Delta d$

Algorithm	Lower Bound	Upper Bound
Damaschke and Sheikh Muhammad 2010		
Non-Adaptive MC Rand.		

	Bshouty 2019	
Non-Adaptive MC Rand.		

Deterministic Estimating the Number of Defective items

Bshouty Haddad-Zaknoon 2020

Given some upper bound $d \le D$ $d/\Delta \le x \le \Delta d$

Bounds	Adaptive/	Result	Explicit/	Ref.
	Non-Adapt.		Non-Expl.	
Lower B.	Non-Adapt.	$\frac{D}{\Delta^2} \log \frac{n}{D}$	-	[1]
Lower B.	Adaptive	$\frac{D}{\Delta^2} \log \frac{n}{D}$	-	Ours
Upper B.	Adaptive	$\frac{D}{\Delta^2} \left(\log \frac{n}{D} + \log \Delta \right)$	Explicit	Ours
Upper B.	Non-Adapt.	$\frac{\log D}{\log \Delta} D \log n$	Non-Expl.	[1]
Upper B.	Non-Adapt.	$\frac{D}{\Delta^2} \left(\log \frac{n}{D} + \log \Delta \right)$	Non-Expl.	Ours
Upper B.	Non-Adapt.	$\frac{D^{1+o(1)}}{\Delta^2}\log n$	$\operatorname{Explicit}^1$	Ours
Upper B.	Non-Adapt.	$\frac{D}{\Delta^2} \cdot \text{Quazipoly}(\log n)$	Explicit	Ours

 Abhishek Agarwal, Larkin Flodin, and Arya Mazumdar. Estimation of sparsity via simple measurements. In 2017 IEEE International Symposium on Information Theory (ISIT), pages 456–460. IEEE, 2017.

Estimate the Number of Defective items

$$(1 - \epsilon)d \le Y \le (1 + \epsilon)d$$

Algorithm	Lower Bound	Upper Bound
	Cheng and Xu (2014)	
Adaptive Rand. MC with		
	Ron and Tsur (2014)	
Adaptive Rand. MC with		
F	alahatgar et al. (2016)	
Adaptive Randomized MC		

+ Expected number queries

Algorithm	Lower Bound	Upper Bound
	Cheng and Xu (2014)	
Adaptive Randomized MC with		
	Ron and Tsur (2014)	
Adaptive Randomized MC with		
	Falahatgar et al. (2016)	
Adaptive Randomized MC + Expected number of queries		
Bshouty, B	shouty-Hurani, Haddad, Hashem, Khour	ry, Sharafy 2018
Adaptive Deterministic and Las Vegas		
Adaptive Randomized MC + Expected number of queries		
Adaptive Randomized MC		14

Algorithm	Lower Bound	Upper Bound
	Cheng and Xu (2014)	
Adaptive Randomized MC with		
	Ron and Tsur (2014)	
Adaptive Randomized MC with		
	Falahatgar et al. (2016)	
Adaptive Randomized MC + Expected number of queries		
Bshouty, B	shouty-Hurani, Haddad, Hashem, Khour	ry, Sharafy 2018
Adaptive Deterministic and Las Vegas		
Adaptive Randomized MC + Expected number of queries		
Adaptive Randomized MC		15

Deterministic Adaptive – Upper Bound

0	*	<u> </u>	4	<u>is</u> is	4	
1						d
$1 - \epsilon$		(1 -	$-\epsilon$) <i>n</i> sets			
Schlaghoff and Tries and Cheng et al. 202	sch 2005 14, 2015	d	$\log \frac{(1-\epsilon)n}{d}$		$\frac{Y}{1-\epsilon}$	$\geq d$
$d\log\frac{n}{d} + O(d)$	<i>l</i>)		Y	$Y \leq d$	$Y \ge (1$	$-\epsilon$)d
		(1	$-\epsilon d \leq Y$	$\leq d$		

Algorithm	Lower Bound	Upper Bound
	Cheng and Xu (2014)	
Adaptive Randomized MC with		
	Ron and Tsur (2014)	
Adaptive Randomized MC with		
	Falahatgar et al. (2016)	
Adaptive Randomized MC + Expected number of queries		
Bshouty, B	shouty-Hurani, Haddad, Hashem, Khour	ry, Sharafy 2018
Adaptive Deterministic and Las Vegas		
Adaptive Randomized MC + Expected number of queries		
Adaptive Randomized MC		17

OPEN PROBLEMS

Algorithm	Lower Bound	Upper Bound
Randomized MC + Expected number of queries		

Randomized MC	

Randomized MC	

Thank You

Thank You

Algorithm	Lower Bound	Upper Bound
	Cheng and Xu (2014)	
Randomized MC with		
	Ron and Tsur (2014)	
Randomized MC with		
	Falahatgar et al. (2016)	
Randomized MC + Expected number of queries		
	Ours	
Deterministic and Las Vegas		
Randomized MC + Expected number of queries		
Randomized MC		

Monte Carlo adaptive algorithm

 $(1-\epsilon)d \le D \le (1+\epsilon)d$

Algorithm	Lower Bound	Upper Bound
	Cheng and Xu (2014)	
Randomized MC with		
	Ron and Tsur (2014)	
Randomized MC with		
	Falahatgar et al. (2016)	
Randomized MC + Expected number of queries		
	Ours	
Deterministic and Las Vegas		
Randomized MC + Expected number of queries		
Randomized MC		

