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Group Testing

Robert Dorfman's paper in 1943 introduced the field of (Combinatorial) Group Testing. The motivation arose
during the Second World War when the United States Public Health Service and the Selective service
embarked upon a large scale project. The objective was to weed out all syphilitic men called up for induction.
However, syphilis testing back then was expensive and testing every soldier individually would have been very
cost heavy and inefficient.

We can combine blood samples and test a combined sample together to check if at least one soldier has
syphilis.



Detecting the Defective items
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Group Testing

Lr Model
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n #Hitems

d #defective items Detecting the Defective items

Algorithm Lower Bound Upper Bound

Adaptive Deterministic or
Randomized (poly)

Non-Adaptive Randomized MC
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Determining the Number of Defective items
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Determining the Number of Defective items
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Monte Carlo Adaptive — Upper Bound

A 5 A A &

o
d <Y < 2d with failure probability at most 5" can be done in d + logdlogl/o

Y? , 1 2 d—1
p = — sets Pr[Faill=1—-(1—— 1—— )1 1-
o r r r

1 2 d—1 d?
<—4—4 -+
ror r 2r

Schlaghoff and Triesch 2005
and Cheng et al. 2014, 2015

n 2
dlog— + O(d) dlo I dl L = dlo 4—d = dlo £+O d
d =4 s =75 =5 @ -




OPEN PROBLEMS Linear (n)

Polynomial

Algorithms

Exponential

S n -
Deterministic il Randomized R. Monte Carlo dlog%

R. Las Vegas

R. MC+Expected
Adaptive t-Round Non-adaptive




Estimating the Number of Defective items
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Algorithm Upper Bound

Non-Adaptive MC Rand.

Non-Adaptive MC Rand.
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Estimating the Number of Defective items

Given some upper bound d < D
d/A <x<Ad

Algorithm Upper Bount

Non-Adaptive MC Rand.

Non-Adaptive MC Rand.



Deterministic Estimating the Number of Defective items

Bshouty Haddad-Zaknoon 2020 Given some upper bound d < D d/A S X S Ad
Bounds | Adaptive/ Result Explicit/ | Ref.
Non-Adapt. Non-Expl.
Lower B. | Non-Adapt. = log % - 1]
Lower B. Adaptive % log - Ours

Upper B. Adaptive % (log 5 + log A) Explicit | Ours

Upper B. | Non-Adapt. ll—gg%D logn Non-Expl. | [1]
Upper B. | Non-Adapt. ﬁ (log - + log A) Non-Expl. | Ours
Upper B. | Non-Adapt. D—IE(# logn Explicit! | Ours

Upper B. | Non-Adapt. % - Quazipoly(log n) Explicit | Ours

[1] Abhishek Agarwal, Larkin Flodin, and Arya Mazumdar. Estimation of sparsity via simple mea-
surements. In 2017 IEEE International Symposium on Information Theory (ISIT), pages 456—460.
IEEE, 2017.



Estimate the Number of Defective items
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Cheng and Xu (2014)
Adaptive Randomized MC with
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Deterministic Adaptive — Upper Bound
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Cheng and Xu (2014)
Adaptive Randomized MC with

Ron and Tsur (2014)
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Falahatgar et al. (2016)
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Expected number of queries




Ada

ptive Deterministic and Las Vegas — Lower Bound
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OPEN PROBLEMS
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Cheng and Xu (2014)
Randomized MC with

Ron and Tsur (2014)
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Falahatgar et al. (2016)
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Monte Carlo adaptive algorithm
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Cheng and Xu (2014)
Randomized MC with
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