Bounds for Group Testing Algorithms to Determine the Number of Defectives

Nader H. Bshouty
Technion

Group Testing

Robert Dorfman's paper in 1943 introduced the field of (Combinatorial) Group Testing. The motivation arose during the Second World War when the United States Public Health Service and the Selective service embarked upon a large scale project. The objective was to weed out all syphilitic men called up for induction. However, syphilis testing back then was expensive and testing every soldier individually would have been very cost heavy and inefficient.

We can combine blood samples and test a combined sample together to check if at least one soldier has syphilis.

Positive
1101
$0110 \quad 1$

0101
$x_{1}, x_{2}, x_{3}, x_{4}$, $x_{5}, x_{6}, x_{7}, x_{8}$, $x_{9}, x_{10}, x_{11}, x_{12}$ $x_{13}, x_{14}, x_{15}, x_{16}$

Detecting the Defective items
Determining the Number of Defective items
Estimate the Number of Defective items

1010
Negative

$$
0101
$$

1010
0101

$$
f=x_{3} \vee x_{10}
$$

Positive
0010
1010
0001

Many other applications

Soldiers \Rightarrow Items
Sick soldiers \Rightarrow defective items
n \#items
d \#defective items

Detecting the Defective items

Algorithm	Lower Bound	Upper Bound
Schlaghoff and Triesch 2005 and Cheng et al. 2014, 2015 and many others		
Adaptive Deterministic or Randomized (poly)		
Folklore Result		
Non-Adaptive Randomized MC (poly)		
A.G. D'yachkov, V.V. Rykov 1982 Porat and Rothschild 2011		
Non-Adaptive Deterministic (poly)		

A. De Bonis, L. Gasieniec, U. Vaccaro 2005

Two-round Deterministic (exp)

M. Cheraghchi 2013

Two-round Deterministic (poly)

$$
n \text { tests } \rightarrow d \log n-d^{2} \log n \text { tests }
$$

Determining the Number of Defective items

Determining the Number of Defective items

Monte Carlo Adaptive - Upper Bound

0

$d \leq Y \leq 2 d$ with failure probability at most $\frac{\delta}{2}$ - can be done in $d+\log d \log 1 / \delta$

$$
\begin{aligned}
r=\frac{Y^{2}}{\delta} \text { sets } \quad \operatorname{Pr}[\text { Fail }] & =1-\left(1-\frac{1}{r}\right)\left(1-\frac{2}{r}\right) \cdots\left(1-\frac{d-1}{r}\right) \\
& \leq \frac{1}{r}+\frac{2}{r}+\cdots+\frac{d-1}{r} \leq \frac{d^{2}}{2 r} \leq \frac{\delta}{2}
\end{aligned}
$$

Schlaghoff and Triesch 2005 and Cheng et al. 2014, 2015

$$
d \log \frac{n}{d}+O(d)
$$

$$
d \log \frac{r}{d}=d \log \frac{Y^{2}}{d \delta}=d \log \frac{4 d}{\delta}=d \log \frac{d}{\delta}+O(d)
$$

Estimating the Number of Defective items

$$
d / \Delta \leq x \leq \Delta d \quad \Delta=1+\Omega(1)
$$

Algorithm
Lower Bound
Upper Bound
Damaschke and Sheikh Muhammad 2010
Non-Adaptive MC Rand.

Bshouty 2019

Non-Adaptive MC Rand.

Bshouty 2019

Non-Adaptive Deterministic or LV Rand.

Estimating the Number of Defective items

Given some upper bound $d \leq \boldsymbol{D}$

$$
d / \Delta \leq x \leq \Delta d
$$

Algorithm	Lower Bound	Upper Bound
Damaschke and Sheikh Muhammad 2010		
Non-Adaptive MC Rand.		

Bshouty 2019

Non-Adaptive MC Rand.

Deterministic Estimating the Number of Defective items

Bshouty Haddad-Zaknoon $2020 \quad$ Given some upper bound $d \leq \boldsymbol{D} \quad d / \Delta \leq x \leq \Delta d$

Bounds	Adaptive/ Non-Adapt.	Result	Explicit/ Non-Expl.	Ref.
Lower B.	Non-Adapt.	$\frac{D}{\Delta^{2}} \log \frac{n}{D}$	-	$[1]$
Lower B.	Adaptive	$\frac{D}{\Delta^{2}} \log \frac{n}{D}$	-	Ours
Upper B.	Adaptive	$\frac{D}{\Delta^{2}}\left(\log \frac{n}{D}+\log \Delta\right)$	Explicit	Ours
Upper B.	Non-Adapt.	$\frac{\log D}{\log \Delta} D \log n$	Non-Expl.	$[1]$
Upper B.	Non-Adapt.	$\frac{D}{\Delta^{2}}\left(\log \frac{n}{D}+\log \Delta\right)$	Non-Expl.	Ours
Upper B.	Non-Adapt.	$\frac{D^{1+o(1)}}{\Delta^{2}} \log n$	Explicit ${ }^{1}$	Ours
Upper B.	Non-Adapt.	$\frac{D}{\Delta^{2}} \cdot$ Quazipoly $(\log n)$	Explicit	Ours

[1] Abhishek Agarwal, Larkin Flodin, and Arya Mazumdar. Estimation of sparsity via simple measurements. In 2017 IEEE International Symposium on Information Theory (ISIT), pages 456-460. IEEE, 2017.

Estimate the Number of Defective items

$$
(1-\epsilon) d \leq Y \leq(1+\epsilon) d
$$

Algorithm	Lower Bound	Upper Bound
Cheng and Xu (2014)		
Adaptive Rand. MC with		
	Ron and Tsur (2014)	
Adaptive Rand. MC with		

Falahatgar et al. (2016)

Adaptive Randomized MC

+ Expected number queries

Adaptive Randomized MC with

Ron and Tsur (2014)

Adaptive Randomized MC with

Falahatgar et al. (2016)

Adaptive Randomized MC +
Expected number of queries

Bshouty, Bshouty-Hurani, Haddad, Hashem, Khoury, Sharafy 2018		
Adaptive Deterministic and Las		
Vegas		
Adaptive Randomized MC +		
Expected number of queries		
Adaptive Randomized MC		

Adaptive Randomized MC with

Ron and Tsur (2014)

Adaptive Randomized MC with

Falahatgar et al. (2016)

Adaptive Randomized MC +
Expected number of queries

Bshouty, Bshouty-Hurani, Haddad, Hashem, Khoury, Sharafy 2018		
Adaptive Deterministic and Las		
Vegas		
Adaptive Randomized MC +		
Expected number of queries		
Adaptive Randomized MC		

Deterministic Adaptive - Upper Bound

Schlaghoff and Triesch 2005 and Cheng et al. 2014, 2015

$$
d \log \frac{n}{d}+O(d)
$$

$$
\begin{array}{ccc}
d \log \frac{(1-\epsilon) n}{d} & & \frac{Y}{1-\epsilon} \geq d \\
Y & Y \leq d & Y \geq(1-\epsilon) d
\end{array}
$$

$$
(1-\epsilon) d \leq Y \leq d
$$

Adaptive Randomized MC with

Ron and Tsur (2014)

Adaptive Randomized MC with

Falahatgar et al. (2016)

Adaptive Randomized MC +
Expected number of queries

Bshouty, Bshouty-Hurani, Haddad, Hashem, Khoury, Sharafy 2018		
Adaptive Deterministic and Las		
Vegas		
Adaptive Randomized MC +		
Expected number of queries		
Adaptive Randomized MC		

Adaptive Deterministic and Las Vegas - Lower Bound

$$
\text { Expect }=d \log \frac{(1-\epsilon) n}{d}
$$

Yao MinMax Theorem

OPEN PROBLEMS

| Algorithm | Lower Bound | Upper Bound |
| :--- | :--- | :--- | :--- | :--- |
| Randomized MC + | | |
| Expected number of queries | | |

Thank You

Thank You

Algorithm	Lower Bound	Upper Bound	
Randomized MC with	Cheng and Xu (2014)		
Randomized MC with			

Monte Carlo adaptive algorithm

$$
(1-\epsilon) d \leq D \leq(1+\epsilon) d
$$

Algorithm	Lower Bound	Upper Bound	
Randomized MC with	Cheng and Xu (2014)		
Randomized MC with			

$$
a_{i}=2^{i}
$$

Falahatgar et al. (2016) $\quad a_{i}=2^{2^{i}} \quad d^{\frac{1}{2}} \leq D_{1}, D_{2}<d^{2} \quad b_{1}=\left(D_{1} D_{2}\right)^{1 / 2}$
$\log \log d$
$\log \log d$
$2 \log \log d$

Ours

$$
a_{i}=2^{2^{i^{2}}}
$$

$d^{2^{-2} \sqrt{\text { log log }}} \leq D_{1}, D_{2}<d^{2^{2 \sqrt{\log \log d}}}$
$b_{1}=\left(D_{1} D_{2}\right)^{1 / 2}$
$\sqrt{\log \log d}$
$\log \log d+\sqrt{\log \log d}$
$\log \log d$

$$
\log \log d+O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)
$$

$$
(1-\delta) \log \log d+O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)
$$

