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Zusammenfassung

Die Zusammensetzung und der Aufbau der sichtbaren Kernmaterie ist Teil aktueller
Grundlagenforschung. Die Quarks als fundamentale Bausteine unterliegen der starken
Wechselwirkung. Als Austauschteilchen dient dabei das Gluon. Der gebundene Zustand
eines Quarks mit einem Antiquark wird als Meson bezeichnet, die Verbindung von drei
Quarks als Baryon. Die Ladung der starken Wechselwirkung ist die Farbe. Aufgrund der
linearen Charakteristik des Potentials der starken Wechselwirkung bei grofien Abstanden
konnen nur farbneutrale Zustiande beobachtet werden. Die Farbladung ist innerhalb des
Zustandes eingeschlossen, was als Confinement bezeichnet wird. Die Quantenchromody-
namik ist die beschreibende Quantenfeldtheorie der starken Wechselwirkung.

Mithilfe der Kollisionen von schweren Ionen ist es moglich, Kernmaterie in einem Zus-
tand sehr hoher Dichte und Temperatur zu erzeugen. Bei den dabei ablaufenden Prozessen
werden sehr hohe Impulse zwischen den Konstituenten iibertragen, die grof3 genug sind,
um Quarks und Gluonen in diesem neuen und exotischen Zustand der Materie quasi
frei beobachten zu kénnen. Dieser Zustand des Deconfinements wird als Quark-Gluon-
Plasma bezeichnet. Die Untersuchung des Phaseniibergangs zum Zustand des Quark-
Gluon-Plasmas und die damit einhergehende Untersuchung des Phasendiagrammes der
Quantenchromodynamik ist mit Hilfe geeigneter Observablen moglich. Dazu eignen sich
seltene Sonden, die in den unterschiedlichsten Phasen einer Schwerionenkollision entste-
hen. So lassen sich z.B. aus der Messung thermischer Photonen Riickschliisse auf die
Temperatur des Quark-Gluon-Plasmas ziehen, oder aus dem Vergleich der gemessenen
Produktionsraten bei Proton-Kern-Kollisionen mit Kern-Kern-Kollisionen Riickschliisse
auf die Beschaffenheit des Quark-Gluon-Plasmas ziehen. Eine dieser seltenen Sonden ist
das J /1 und seine angeregten Zusténde, die tiber ihre Zerfallsprodukte nachgewiesen wer-
den kénnen.

Zum Nachweis der im Verlauf der Kollisionen entstehenden Teilchen wird die Wech-
selwirkung der Teilchen mit ihrer umgebenden Materie ausgenutzt. Geladene Teilchen,
die einen Detektor durchfliegen, ionisieren das sie umgebende Material. Die so frei wer-
denden Elektronen und Ionen kénnen nachgewiesen werden. Ebenso kénnen Teilchen
Energie durch die Emission von Photonen verlieren. Diese Photonen koénnen iiber den
Cherenkov-Effekt oder iiber die Entstehung von Ubergangsstrahlung entsendet werden.
Die Wahrscheinlichkeit zur Aussendung eines Ubergangsstrahlungsphotons ist dabei ab-
héngig vom v Faktor. Somit ist es mit Hilfe dieses Effektes moglich Elektronen und
Pionen zu unterscheiden. Die Ionisationsspur und ein moéglicherweise entstandenes Uber-
gangsstrahlungsphoton werden in einer Vieldrahtproportionalkammer (MWPC) nachge-



wiesen. Da die Erzeugung des Ubergangsstrahlungsphotons ein statistischer Prozess an
einer Grenzschicht zweier Materialien unterschiedlicher Dielektrizitatskonstanten ist, wird
zu ihrer Erzeugung ein Radiator verwendet. Dieser Radiator stellt viele Grenzschichten
zwischen je zwei Materialien bereit. Es wird dabei zwischen regelméfiigen Radiatoren,
z.B. Stapel von Folien mit definiertem Abstand, und unregelméfligen Radiatoren, z.B.
Schaume aus Polyethylen, unterschieden. Der Radiator ist direkt an eine Vieldrahtpro-
portionalkammer angebracht. Die MWPC besteht dabei aus den begrenzenden Kathoden
und einer Anodendrahtebene im Inneren und ist mit dem Detektorgas gefiillt. Das zu de-
tektierende Teilchen durchfliegt Radiator und MWPC. Das Ubergangsstrahlungsphoton
wird innerhalb der MWPC absorbiert. Zusammen mit Elektronen, die beim Durchfliegen
durch Ionisation entstehen, driften Elektronen entlang des elektrischen Feldes zu den An-
odendrahten. Nah an den Drahten entsteht aufgrund des erh6hten Feldes eine Elektronen-
lawine (Gasverstiarkung) die an den Anodendrihten absorbiert wird. Dabei wird auf den
Kathoden eine Spiegelladung induziert. Die entsprechend entstehenden lonen erzeugen
ein auslesbares Signal, das durch die Ausleseelektronik weiter verarbeitet wird.

Die zukiinftige Facility for Antiproton and Ion Research (FAIR) wird mit es mit ihren
Beschleunigerkomplexen SIS 100 und SIS 300 ermoglichen, Kollisionen von schweren Ionen
mit einer nie vorher dagewesenen hohen Ereignisrate zu erzeugen, um so seltene Sonden des
Quark-Gluon-Plasmas mit ausreichender Préazision in den angeschlossenen Experimenten
nachzuweisen.

Das Compressed Baryonic Matter (CBM) Experiment ist ein fixed target Experiment
am SIS100/300. Es ist modular aufgebaut und ermdoglicht es, dedizierte Messungen durch
geeignete Kombination unterschiedlicher Detektorsysteme durchzufiihren. Insbesondere
kann der Aufbau wahlweise fiir die Messung von Elektronen oder Myonen optimiert wer-
den. Je nach Ausbau der Beschleunigeranlagen sind Ausbaustufen fiir SIS100 und SIS300
vorgesehen. Die beteiligten Detektorsysteme sind dabei ein Micro-Vertex-Detektor und
ein Silizium-Streifen-Zahler, die innerhalb eines supraleitenden Magneten angebracht sind.
AufBerhalb des Magneten befinden sich ein Ring-Imaging Cherenkov Detektor (RICH), der
Ubergangsstrahlungszéhler (TRD), der Gegenstand dieser Arbeit ist, sowie die Komponen-
ten der Teilchenflugzeitmessung. Im Myon-Messszenario befindet sich anstelle des RICH
ein Myon-Detektionssystem. Aufgrund der hohen zu erwartenden Teilchenraten wird das
CBM Experiment fiir eine kontinuierliche Datenauslese ausgelegt.

Der Ubergangsstrahlungszihler des CBM Experimentes wird zur Identifikation geladener
Teilchen, speziell zur Unterscheidung von Elektronen und Pionen, dienen. Auch wird der
TRD f{iber die Messung von Spurpunkten zur Rekonstruktion der Teilchentrajektorien
beitragen. Die angestrebten Messungen seltener Proben und die experimentelle Umge-
bung definieren dabei die Anforderungen an den TRD. So muss der TRD es erméglichen,
Pionen um einen Faktor 100 zu unterdriicken, bei einer geforderten Effizienz von 90% fiir
Elektronen. Die Ortsauflosung des TRD muss genauer als 1 mm sein, um ein ausreichend
gutes Signal zu Untergrund Verhaltnis z.B. fiir die Zerfallsprodukte des J/v zu erreichen.
Basierend auf den zu erwartenden hohen Ereignisrate und den unterschiedlichen Positionen
innerhalb der gegebenen Messszenarien wurden die ortsabhangigen Teilchenraten inner-
halb des TRD abgeschétzt. Um den TRD in die Messszenarien des CBM Experimentes



zu integrieren wird der TRD in drei separaten Stationen mit je 4+4+2 Detektorlagen
aufgebaut. Somit ist es moglich, den TRD in die verschiedenen Aufbauten und bei ver-
schiedenen Strahlenergien optimal einzusetzen.

Zur Realisierung eines Ubergangsstrahlungszéhlers fiir das Compressed Baryonic Matter
Experiment werden unterschiedliche Ansétze verfolgt. Im Rahmen dieser Arbeit werden
diinne, symmetrische Vieldrahtproportionalkammern vorgeschlagen. Im Hinblick auf die
hohen Teilchenraten innerhalb des TRD sollen mit Hilfe des schmalen Verstarkungsbereiches
Signale hinreichend schnell erzeugt werden. Die vorgeschlagenen Prototypen werden mit
einem dinnen folienbasierten Eintrittsfenster versehen, um das zuséatzliche Materialbudget
zwischen Radiator und MWPC so gering wie méglich zu halten. Unterschiedliche Ansétze
werden von den kollaborierenden Arbeitsgruppen in Miinster und Bukarest untersucht. Hi-
erbei kommt insbesondere ein zusétzlicher Driftbereich zum Einsatz, der jedoch zu einer
langsameren Signalerzeugung fiihrt.

Basierend auf dem Konzept symmetrischer Vieldrahtproportionalkammern ohne Drift-
bereich wurden verschiedene Prototypgenerationen angefertigt. Die Prototypen der ersten
Generation wurden als Machbarkeitsstudien angefertigt und getestet. In den Generationen
IT und IIT wurden die Geometrien der Draht- und der Kathodenebenen auf 444 mm und
5+5mm festgelegt sowie unterschiedliche Rahmenmaterialen verwendet. Die Prototypen
der Generation II und III weisen eine aktive Fliche von 15 x 15cm? auf. Basierend auf
den Erfahrungen und den Ergebnissen einer Teststrahlzeit mit den Generation IT und III
Prototypen wurden die Prototypen der IV. Generation in einer Gréfie von 60 x 60 cm?
angefertigt. Dies entspricht der realen Grofle von Detektormodulen im inneren Bereich
des CBM TRD. Zur Fertigung des folienbasierten Eintrittsfensters wurde ein speziell en-
twickeltes thermisches Spannverfahren entwickelt. Alle hergestellten Prototypen weisen
eine einfache Bauart auf, die es ermoglicht, einzelne Komponenten auszutauschen.

Zu den entwickelten Vieldrahtproportionalkammerprototypen wurden entsprechende Pro-
totypen von Radiatoren entwickelt. Neben regelmafligen Folienradiatoren in unterschiedlichen
Konfigurationen von Foliendicke und Abstéinden, wurden Radiatoren aus Polyethylen-
schdumen verwendet. Es wurden ebenfalls Radiatoren in Sandwichbauweise entwickelt,
die, begrenzt von soliden Schaumschichten, ein Fasermaterial als Radiator benutzen.

Zur Auslese der Prototypen wurde der SPADIC Chip in der Version 0.3 verwendet. Die
Pad-Ebene der Generation IV Prototypen ermoglichen es ebenfalls, die Weiterentwicklung
(SPADIC v1.0) sowie andere Front-End-Elektronik zu benutzen.

Zu den Prototypen ohne Driftbereich wurden Simulationen beziiglich ihrer elektro-
statischen und mechanischen Eigenschaften durchgefiihrt. Mit Hilfe des Software-Paketes
Garfield wurden das elektrische Feld und die daraus resultierenden Driftlinien der entste-
henden Elektronen berechnet. Die mittlere Gasverstéarkung in Abhéngigkeit vom verwen-
deten Detektorgas sowie in Abhéngigkeit von der angelegten Anodendrahtspannung wurde
simuliert. Die geometrische Homogenitét der Gasverstiarkung wurde ebenfalls betrachtet.



Da bei der Verwendung eines folienbasierten Eintrittsfensters eine Deformation aufgrund
von differentiellem Uberdruck zu erwarten ist, wurde die Variation der Gasverstirkung in
Abhéngigkeit der Ausdehnung des Eintrittsfensters besonders untersucht. Ebenso wur-
den Simulationen der mechanischen Stabilitdt des Eintrittsfensters mit Hilfe einer Finite-
Elemente-Methode angefertigt, um die Variationen der Gasverstarkung abzuschétzen. Die
zu erwartenden Driftzeiten und die resultierenden Signale wurden ebenfalls mit Hilfe des
Softwarepaketes Garfield simuliert.

Die angefertigten Prototypen wurden mit weiterfithrenden Messungen im Labor unter-
sucht. Die simulierte Ausdehnung des folienbasierten Eintrittsfensters wurde mit Uber-
drucktests verifiziert. Die absolute Gasverstarkung wurde in einem Aufbau bestimmt,
in der die Prototypen einer ionisierenden Strahlung ausgesetzt waren. Die Homogenitat
der relativen Gasverstarkung der Generation IV Prototypen wurde bei einer gegebenen
Verformung des Eintrittsfensters gemessen. Ebenso wurde mit Hilfe einer %°Fe-Quelle die
Energieauflosung der Vieldrahtproportionalkammern bestimmt.

Die Elektron-Pion-Separation der Prototypen der Generationen II, I und IV wurden in
zwei Teststrahlzeitkampagnen 2011 und 2012 am CERN PS bestimmt. Diese Strahlzeiten
wurden gemeinsam mit den Instituten aus Miinster und Bukarest sowie den Detektorsyste-
men RICH und TOF im Experimentierbereich T9 durchgefiihrt. Dabei lieferte das CERN
PS einen Teilchenstrahl aus Elektronen und Pionen mit einem Impuls von 2 GeV /c bis zu
10 GeV/c. Fiir diese Teststrahlzeiten wurde ein auf dem Go4-System basiertes Echtzeit-
analysesystem entwickelt und die benutzten SPADIC v0.3 Ausleseelektronik in das Daten-
erfassungssystem integriert. Wahrend der Teststrahlzeit 2012 wurden zusétzlich externe
Parameter fiir eine mogliche Kalibration der Gasverstarkung aufgenommen.

Die wahrend der Teststrahlzeiten aufgezeichneten Daten wurden ausgewertet. Zur
Bestimmung der Teilchenidentifizierung wurde eine Kombination aus zwei Cherenkov-
Detektoren und einem Bleiglas-Kalorimeter als Referenz benutzt. Mithilfe eines Sepa-
rationsverfahrens wurde die Reinheit der Referenz-Teilchenidentifizierung und somit ein
Beitrag zum systematischen Fehler der anschliefenden Messungen bestimmt. Die aufge-
nommenen Rohdaten wurden mit einem mehrstufigen Korrekturalgorithmus von Storein-
fliissen befreit. Dieser Korrekturalgorithmus benutzt Ereignisse ohne Teilchen in den zu
testenden Detektoren, um die Variation der Impulsboden der Ausleseelektronik zu kor-
rigieren. Weiterhin wurden aus den Signalen die korrelierten Storeinfliisse mit Hilfe eines
auf der Kovarianz-Matrix basierenden Verfahrens isoliert und entfernt. Diese Signale wur-
den weiter in einem Algorithmus zur Cluster-Bestimmung verarbeitet. Dabei wurde aus
den Signalen sowohl die Amplitudeninformation als auch das integrierte Gesamtsignal ver-
wendet. Mit den so aufbereitete Signalen und der externen Teilchenidentifizierung ist es
moglich Spektren der deponierten Ladung fiir Elektronen und Pionen zu erzeugen. Diese
Spektren wurden mit einem multiplikativen Verfahren beziiglich der Gasverstarkung kalib-
riert.

Basierend auf den Ladungsspektren lésst sich die Leistungsfiahigkeit der benutzten Radi-
atorprototypen beziiglich ihrer Elektron-Pion-Separation bestimmen. Dabei wird sowohl



ein Verfahren verwendet, welches ausschliellich eine Detektorlage verwendet, als auch Ex-
trapolationsverfahren angewendet. Die Extrapolationsverfahren basieren auf den Berech-
nungen einer klassischen und logarithmischen Likelihood-Methode. Die Leistungsfahigkeit
verschiedener Radiator-M WP C-Kombinationen wurde miteinander verglichen. Dabei stellte
sich heraus, dass die Leistungsfahigkeit der schaumbasierte Radiatoren mit den theo-
retisch gut verstandenen regelmafligen Folienradiatoren vergleichbar sind und eine dhnlich
gute Trennung von Elektronen und Pionen zulassen. Sie stellen daher eine einfach zu
handhabende und kostengiinstige Alternative zu regelméfliigen Radiatoren dar. Die Leis-
tungsfahigkeit beziiglich der Elektron-Pion-Trennung wurde abhangig vom Impuls der
durchquerenden Teilchen analysiert.

Mit Hilfe der Informationen aus dem Algorithmus zur Cluster-Bestimmung wurde die
Pad-Response-Funktion bestimmt. Aus einer Anpassung der theoretischen Beschreibung
wurde daraus die tatséchliche Ausdehnung, welche sich auf Grund des differentiellen
Uberdruckes ergibt, fiir die Prototypen der Generation IV wihrend der Teststrahlzeit
2012 bestimmt.

Aus den Ergebnissen lasst sich schlieflen, dass diinne, symmetrische Vieldrahtpropor-
tionalkammern nur mit Verstarkungsbereich kombiniert mit einem schaumbasierten Ra-
diator die Anforderungen des CBM Experimentes an einen Ubergangsstrahlungszihler
erfiillen.

Untersuchungen beziiglich der Ratenfestigkeit der vorgeschlagenen Prototypen befinden
sich in der Vorbereitungsphase. Weiterentwicklungen des MWPC-Designs basierend auf
einer alternierenden Anodendrahtgeometrie zur Minimierung der Variationen der Gasver-
starkung sowie die mechanische Unterstiitzung und Stabilisierung des Eintrittsfensters mit
Hilfe eines Radiatormaterials werden ebenfalls untersucht.
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1 Introduction

The genesis and the evolution of our observable universe is a topic in which many scientists
are interested in. It is assumed that matter and anti-matter were created at the Big Bang
and a hot and dense state of matter called Quark Gluon Plasma (QGP) has been devel-
oped. High-energy heavy-ion collisions are a tool to investigate and analyze the properties
of this exotic state of matter in the laboratory. First experiments exploring the properties
of the quantum-chromodynamic’s phase diagram were performed at BEVALAC [BF11] at
Lawrence Berkeley Laboratory and the SIS18 at GSI in Darmstadt at collision energies
of 1-2 AGeV. These energies were too low to reach the area of deconfinement in the phase
diagram. In experiments at the Alternating Gradient Synchrotron (AGS) at Brookhaven
National Laboratory (BNL), where gold nuclei at energies of 2 and 11 AGeV, and at the
CERN Super Proton Synchrotron (SPS) where lead ions of 10 to 160 AGeV were collided
with a fixed target, first signatures for the QGP [PRSZ08] were observed. The Relativistic
Heavy-Ion Collider (RHIC) at BNL investigated Au-Au collisions at top center of mass
energy of \/syn = 200GeV. The Large Hardon Collider at CERN currently collides Pb
ions at /syn = 2.76 TeV. At these energies the ratio of matter to anti-matter is roughly
unity in the region of a lower baryonic density.

The future Compressed Baryonic Matter (CBM) experiment [BF11] at the Facility for
Antiproton and Ion Research (FAIR) in Darmstadt (Germany) is designed to explore the
unknown area at lower to moderate temperatures and at high baryonic densities in the
QCD phase diagram by utilizing heavy-ion collisions of different ion species with a fixed-
target energy of up to 44 AGeV at an unprecedented high particle flux of up to 5- 10!
particles per bunch. The analysis of these collisions allows to characterize the properties
of the generated state of matter during the collision. The reaction products and the sub-
sequently generated decay products are tracked and identified inside the CBM experiment.

The identification and tracking of electrons are the supreme disciplines of a Transition
Radiation Detector (TRD). Its working principle is based on the characteristic of energy
loss due to photon emission of traversing particles. Multi-Wire Proportional Chambers
(MWPC) are utilized to detect the generated signals of these particles.

This work describes the development, construction and characterization of a Transition
Radiation Detector prototype for the future Compressed Baryonic Matter experiment on
the basis of simulation and test beam campaigns. The proposed prototypes employ a
low-absorption foil-based entrance window, a driftless MWPC for signal generation and a
rectangular readout-pad geometry.






2 Physics Motivation

The questions about the properties of the material in our environment is one of the oldest
questions of mankind. The properties of the smallest particles and the properties of the
interaction of these particles are one part of this fundamental question.

The CBM experiment will explore these particles and their interaction. The following
chapter will briefly depict the current state of research and summarize the contribution of
the CBM experiment to this topic.

2.1 The Standard Model of Particle Physics

Matter consists of atoms. Protons and neutrons form the nucleus of an atom, which is or-
bited by electrons, see figure 2.1. But protons and neutrons are not fundamental particles,
they are composed of quarks and gluons. The properties of these fundamental particles
as well as their interaction are descried in the socalled Standard Model.

Quar‘Es O O Nucleus with Atoms Matter
”~ Electrans

Figure 2.1: Illustration of the composition of our visible matter [Uni].

2.1.1 Quarks, Gluons and the Strong Interaction

In the 1960’s Murray Gell-Mann postulated the existence of quarks as fundamental parti-
cles with half-integer spin and a 1/3 electric charge [GM64]. Up to that proposal hardonic
particles were described with their quantum numbers Isospin and Strangeness. Based on
both origins todays standard model of particle physics has been developed containing six
quark species, six kinds of leptons and their corresponding anti particles. This is completed
by the gauge bosons and the recently discovered Higgs boson [AC12]. Quarks and leptons



2 Physics Motivation

are categorized as fermions, particles with spin 1/2. Figure 2.2 shows a schematic view
on this classification. Quarks and leptons can additionally be categorized in three gen-
erations, so called families, represented by the vertical ordering of the columns in figure 2.2.
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Figure 2.2: Particles of the standard model with their mass, charge and spin properties,
including the Higgs Boson.[SMw].

The four fundamental forces represented by their exchange particles are also listed in fig-
ure 2.2. The standard model of particle physics utilizes the concept of a virtual transmitter
for the effect of the forces. These four forces are the strong, weak and electromagnetic
interactions and the gravitation. The masses of the gauge bosons are correlated strongly
to their range which has been proven experimentally. Quarks and gluons are interacting
strongly, bound states are called hadrons. Hadrons are subdivided in baryons and mesons
according to their baryon number B. Quarks carry B = 1/3, Antiquarks B = —1/3.
Hadrons with B = +1 are assigned as baryons, hadrons with B = 0 are assigned to
mesons [Grol0].

Nuclear processes are dominated by the strong interaction. The model of choice to de-
scribe this force is the Quantum Chromo Dynamics (QCD). Similar to the electric charge
in the Quantum Electro Dynamics (QED), strongly interacting matter is attached with
a color charge in QCD where red, green and blue, anti-red, anti-green and anti-blue are
the states of this color charge. Quarks carry one single color, anti-Quarks one anti-color.
Gluons are charged with a color and a anti-color at the same time. The fact, that glu-
ons are color charged leads to the phenomenon that they can self interact, which is one
fundamental difference to QED, where the photons do not carry an electric charge. The
coupling constant is strongly depending on the momentum transfer @2, the QED coupling
constant o, is almost independent from @Q?. For the strong interaction based on QCD,
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the coupling constant o shows a clear dependence on Q2. It also shows a ~ %2 behavior
on the distance of the constituents. The functional dependency of ae,, and as is shown
in figure 2.3.
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Figure 2.3: as and o, depending on Q? [PRSZ08].

The potential of the strong interaction is given by the following formula:

v _g ~ag(r)he

The potential of the strong interaction has been explored according to the coulomb
potential via energy level schemata. The analogy of a Positronium (bound state of elec-
tron and positron) to the Charmonium (bound state of a charm quark and an anti-charm
quark) revealed differences at very small and also at very large distances [Kén86]. The
larger the distance of two quarks gets, the larger the linear component of the potential k-7
gets. This potential grows until enough energy is stored it to create a new colorless quark
- anti-quark pair. This phenomenon of the strong interaction is called string breaking.
According to this, only color neutral particles can exist and they are subject to the condi-
tion of confinement. However at very small distances or at very large momentum transfers
the potential vanishes, because the coupling constant g converges to zero. Quarks and
gluons are then asymptotically free. This state is called deconfinement, the constituents
can be observed as quasi-free.

+ kr. (2.1)

2.1.2 The Quark Gluon Plasma and the Phase Diagram

Heavy-ion collisions provide such high energy densities that the state of deconfinement
can be reached, which is attended by a phase transition of the medium [BF11]. The in-
volved hadron gas crosses over into a hot and dense state called Quark Gluon Plasma.
This phase transition can be compared with a classical change of the aggregate state. The
characterization and quantification of such a state of matter and its phase diagram are
the objectives of the CBM experiment.
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According to the potential of the strong interaction (see equation 2.1) the bounding of
two quarks at very small distances vanishes. In heavy-ion collisions the energy density
€ of the observed system, depending on temperature and the net baryonic density, is in-
creased. The critical value of the energy density for the phase transition is e, ~ 1 GeV /fm?.
If this value is exceeded the hadron gas goes over into the state of a Quark Gluon Plasma
[PRSZ08].

200

175

Quark—gluon plasma

150
125

100

~
(&)

Hadron phase

Temperature [MeV]

N a1
o1 O

250 500 750 1000 1250 1500 1750 2000
Baryon chemical potential [MeV]

Figure 2.4: Schematic view on the QCD phase diagram [SBRR].

Figure 2.4 shows the simplified version of the quantum chromodynamics phase diagram.
The temperature (energy of the observed medium) is depicted as function of the baryo-
chemical potential up. At low values of up < 350 MeV a smooth transition from hadron
gas and quark gluon plasma is expected (crossover). For higher values of up > 500 MeV
a first or second order phase transition is predicted.

One of the main intentions of the current heavy-ion research is the examination of the
Quark Gluon Plasma (QGP) and the comparison with theoretical models and their pre-
dictions. The left part of figure 2.5 shows three different thermal models of the QGP.
The right part of figure 2.5 shows trajectories of Pb-Pb collisions at different energies.
Starting at low temperature and nominal values of hardronic matter the system reaches
higher values in temperature. At the future Schwerionensynchroton-300 (SIS-300) at the
Gesellschaft fiir Schwerionenforschung in Darmstadt high baryon densities will be reached.

Measurements at moderate beam energies were performed at the CERN Super Proton
Synchrotron (SPS) and at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven Na-
tional Laboratory. These measurements cover a wide range of energy but the collected
statistics did not allow a sufficiently precise measurement of for example the Charmonium,
which is a bound state of a charm-anticharm pair. Besides other key measurements CBM
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Figure 2.5: Thermal models of the QCD phase diagram [AA]. Right: trajectories of the
heavy ion collision [col05].

at SIS-300 aim to provide these data in order to complete the knowledge about the QGP.

To generate a quark gluon plasma, heavy-ions are collided using modern accelerator
techniques. Lead or gold ions are accelerated to ultra-relativistic velocities and than
brought to collision where two different kinds of techniques are distinguished: collider ex-
periments, where the two colliding ions are both accelerated and than brought to collision,
and fixed-target experiments, where one accelerated ion collides with a non moving target.
In collider experiments a larger center of mass energy /s than in fixed target experiments
can be achieved. However in fixed target experiments the luminosity is higher than in
collider experiments.

The CBM Experiment requires very high statistics for its high precision measurements,
which will be achieved with the help of high luminosities delivered by the future SIS-300
for a fixed-target setup. The key measurements will be the analysis of particles which
include a charm quark like D°, J/+) and¥ ". The expected production rates in a Au-Au
collision at a given energy are shown in figure 2.6. These calculations were done using the
HSD model (version 2.4) with an impact parameter b = 0.5fm [col05]. The comparison of
the exception to the measured production rate of such particles is one possibility to test
the agreement of the properties of the observed medium with the assumed model.

2.2 Observables of the CBM Experiment

In case of the QGP many observables that could enable the probing of its properties were
discussed. The production rate of particles containing a strange or charm quark or the
suppression or enhancement compared to model predictions of the J/¢ are considered to
serve as such signatures. There is not one single observable or signature which can prove
the existence of the QGP, but the combination of multiple observables or signatures could
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Figure 2.6: Mean number ((NV)) of particles per average event in a Au-Au - collision at
VSnn = 10, 20 and 30 AGeV calculated using HSD v2.4 model [col05].

reveal the nature of the QGP and its phase transitions.

The supreme discipline of a Transition Radiation Detector is the precise discrimination
of electrons/positrons and pions. Almost all particles listed in figure 2.6 have at least one
decay channel involving electrons, positrons or pions. The measurement of dilepton pairs
and in particular the measurement of the J/v are described exemplarily in greater detail.

2.2.1 Dileptons

Dileptons are lepton - antilepton pairs which are generated in decay processes. They do
not interact strongly, which enables them to traverse the strongly coupled medium with-
out being affected. Dileptons transmit informations of all stages of the heavy-ion collision.
The effect of electromagnetic interaction can be neglected in that case because the mean
free path of photons and leptons is larger than the expected size of the generated medium.

Dilepton pairs are generated in decay processes which happen frequently enough in
heavy ion collisions. According to the production channels of dileptons a variety of initial
particles can be observed in a invariant mass spectrum. Since e” +e™ pairs have the small-
est rest mass, the phase space to generate such pairs is largest for all lepton-antilepton
pairs. Therefore e~ + et pairs are the dominating contributers to the dilepton invariant
mass spectrum. Figure 2.7 shows an invariant mass spectrum only for e~ + e pairs.
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Figure 2.7: Expected sources of e~ +e™ production as function of invariant mass in ultra-
relativistic heavy ion collisions [Dah08§].
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The measured dileptons are assigned to different production mechanisms according to
their invariant mass. In the low mass region up to ~ 0.9 GeV/c? the decay products of
light vector mesons like the p, w and ¢ are expected. Within this mass region, a variation
of heavy-ion collisions compared to proton-nucleus collisions may serve as a signature for
the QGP [Rapl1].

In the intermediate mass region, from ~0.9 GeV/c? up to ~2.7 GeV/c?, semileptonic
decays of charm and anticharm quarks are considered the main contributing processes.
The source of these processes are considered to be from hard scattering [Col10].

At high masses (>2.7 GeV/c?) Drell-Yan-Processes and the quark-antiquark annihila-
tion of heavier quarks like charm - anticharm and bottom-antibottom are relevant pro-
cesses. Inside the generated medium, the collision of such quark-antiquark (¢g) pairs
result in a virtual photon which decays immediately into a lepton-antilepton pair of the
corresponding invariant mass.

2.2.2 J /1) Suppression

The measurement of the production rate of the J/¢ meson is considered to be one of the
smoking gun signatures of the quark gluon plasma. The J/1 is the lightest vector meson
of the charmonia. It is a state of a bound charm - anticharm (c¢) quark pair. It has a
long lifetime resulting in a narrow peak in the invariant mass spectrum because the strong
decay channel into two D-Mesons is impossible due to energy conservation. Because of this
the electromagnetic decay channel into dileptons has a significant branching ratio [Gro10].

Due to the high mass of the c¢ pair these bound states are formed in the early phase of
the heavy-ion collision based on hard scattering processes. However, if a QGP is formed,
the color charge of charm quarks is shielded due to the color charge of the other quarks and
gluons inside this medium. This phenomenon is called Debye-Screening, which is known
from electromagnetic plasmas. Additionally to the restricted production processes, it is
considered that the existing c¢ pairs brake up due to scattering processes inside the QGP.
These so-called cold nuclear matter effects can be studied in proton-nucleus collisions.
Finally, a comparison of pp, p—A and A—A collisions will shed light on the question of
deconfinement at FAIR energies.

10



3 Principle of Operation of a Transition
Radiation Detector

A Transition Radiation Detector provides the possibility to detect and identify charged
particles passing the active area of the detector. With the help of its generated signals an
accurate position determination of the puncture can be accomplished. The first part of
this chapter describes the interactions of a charged particle with its surrounding medium.
The second part lays out the working principle of the TRD and denotes the function of
the detector parts. [BRROS§]

3.1 Interaction of Charged Particles with Matter

Every interaction of a particle with matter causes a loss of energy of this particle. Mostly
this energy loss is caused by an electro-magnetic process. The characteristic of this process
can be used to identify and/or track the charged particle in the detector. There are three
different processes relevant for state-of-the-art detector concepts:

e atoms of the active detector volume can be excited or ionized
e a charged particle passing through the medium emits Cherenkov light

e a charged particle can emit a transition radiation photon which is taken advantage
of in a TRD.

3.1.1 Energy Loss: lonisation

The dominant process for energy loss of a charged particle in a medium is the specific
energy loss caused by ionization and excitation of surrounding atoms. It is described by
the Bethe-Bloch-formula [GS08]:

dFE Al B 0
— — =A47Nagrimec®2? = — (In—kin _ g2 _ _ 3.1
dx ™ A e e Zﬂz I 5 2 ( )
with N4 as Avogadro constant, r. and m, as radius and mass of an electron, Z and A as
atomic and mass number of the medium and I as its ionization potential and the density
parameter 9. The maximum transferable kinetic energy of a particle to the atomic shell
is B, It can be approximated for particles with mo < m. and moderate energies
(2ym. < 1 which is true for pions with a momentum smaller than 18 GeV/c) with
En® = 2mec® 5247, (3.2)
The specific energy loss is independent of the mass of a charged particle. It only depends
on the velocity 5 = v/c and the charge of the ionizing particle. As function of velocity
the specific energy loss decreases with 1/32 until a broad minimum is reached at v = 4.
Particles in this region are called Minimum Ionizing Particles (MIPs). Starting at the
minimum of B ~ 1 the relativistic rise is proportional to In(827? = 21In(v)). This rise is

11
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founded in the relativistic expansion of the transverse field of the particle. With increasing
range of the field, the shielding of the electrons of the medium also increases. The energy
loss saturates earlier in the so called Fermi-plateau the more dense the surrounding medium
is. This effect is described with the density parameter §. For noble gases the relativistic
rise can reach values of 50 - 70%, in solid materials only around 10% [GSO08, Kle05].

3.1.2 Energy Loss: Emission of Photons
Cherenkov Effect

According to quantum electrodynamics all electromagnetic processes are based on photon
exchange. Which of the initially mentioned (section 3.1) phenomena actually happens,
depends on the energy and the dielectric constant of the medium ¢ = €1 + iea, where
€1 = n? is given by the refractive index n and ey. The different cases are described by the
photon absorption and ionization model [WJ80]: The emission angle §¢ of a photon with
energy hw < 7yoc? in the direction of movement of the particle can be approximated by

the four-vector conservation and the dispersion equation

1 1le
Bve  vye

Is the energy of the photon above the lowest excitation energy of the surrounding
medium (ea > 0), only virtual photons can be exchanged which may cause excitation
or, if carrying enough energy, ionization. This excange can not happen if the energy is
below this excitation energy (e2 = 0). There the dielectric constant is real and with ¢; > 1
the angle 6, also gets real according to equation 3.3 if the particle is faster than the speed
if light in this particular medium (v > ¢/+/€). This allows the emission of a real photon
with a wavelength in the optical band. This phenomenon is called Cherenkov radiation.

cos o = (3.3)

Transition Radiation

The energy loss of a particle through the exchange of a virtual photon can loom up the
region of several MeV, but the interoperability decreases with 1/E%. When e — 0 the
absorption region is shifted to the x-ray area. This transition is done at energies of ~
5keV [Kle05]. Then €; gets almost real and the emission of real photons gets in principle
possible again. But then ¢; < 1 so that the necessary speed of the particle is v < ¢. Ac-
cording to this, the emittance of cherenkov radiation within the medium is not possible.
But, if the dielectric constant changes at the transition from one medium to an other,
transition radiation can be generated at the boundary of the two media.

The charged particle develops a dipole with the induced mirror charge when approach-
ing the boundary of the media. The field intensity varies when the particle gets closer to
the boundary and collapses completely when the particle penetrates the second medium.
This temporally change of the field intensity can lead to the emission of a real photon with
a wavelength in the x-ray region.

The amount of this radiation, also denoted as intensity in this frequency region, is given
by [Kle05]:

dn 2« yw
dn 20y (2) .
dw > W . w (34)
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with « as the fine structure constant and the plasma frequency w,. The probability of
emitting a photon the boundary of two media is at the order of « = 1/137 [GS08]. While
the intensity of the radiation only rises with In~y, the energy flow rises proportional to ~y
according to

1
S = ga22hwp’y (3.5)

A particle with larger Lorentz factor is only producing slightly more transition radiation
photons than a particle with a lower Lorentz factor, but, on average, this TR-Photon has
a higher energy. The direction of emission of the TR-Photon is laying on a cone around
the particle trajectory with an opening angle of = 1/ [GS08].

For a sufficiently high TR yield several hundred transitions of different media are re-
quired due to the low production probability. In practice this is often realized with regular
reoccurring structures like stacks of foils with a defined air gap in between. This type of
radiators is called regular radiator. The energy spectrum of the TR photons of such a reg-
ular radiator can be described by a theoretical model which considers interference effects
[CWT75]. This interference effects appear due to coherent overlays of radiation fields on
both surfaces of the bordering media as well as from different layers of a medium.

Events
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Figure 3.1: Measured energy spectra of TR-Photons produced in regular foil radiators of
variable width d; shown together with simulations (smooth line) [CWT75].

The measured TR photon spectra of three regular radiators with different foil widths
are shown in figure 3.1. The interference effect increases significantly from (a) to (c¢). This
can be described very well by a model from [CW75].

3.2 Working Principle of a TRD

In heavy-ion collision experiments the main task of a transition radiation detector is the
separation of electrons and pions of momenta p 2> 1GeV/c. This results from the fact
that electrons (and positrons) are the only particle which are ultra relativistic (y 2 2000)
and are thus able to produce TR-Photons at these momenta.

13
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A Multi-Wire Proportional Chamber (MWPC) consists essentially of a set of thin,
parallel, and equally spaced anode wires, symmetrically sandwiched between two cathode
planes. Depending on the experimental requirements one usually chooses a detector gas
mixture consisting of a quenching gas like C'Oy and a noble gas like Xe or Ar. When
a negative potential is applied to the cathodes and the anode is grounded or a positive
potential is applied to the wires and the cathodes are grounded, respectively, an electric
field develops as sketched in figure 3.2.

Anode wires Readout Pads Cathode wires Anode wires Readout Pads
\
Pion \
Pion
== .
Electron
Electron > e
— \_/§ _‘ﬁ
\
TR-Photon —a= lk\
TR-Photon | - -~
Radiator Radiator
— MWPC N MWPC

Figure 3.2: Schematic layout of a MWPC without (left) and with additional drift region
(right).

3.2.1 Radiator

The production of transition radiation takes place when an ultrarelativistic particle crosses
multiple layers of different materials. The typical energy of the TR-photon is within the
range of 1-30keV (see figure 3.1). To lower the potential re-absorption, radiator materials
with low atomic numbers are used. The photo- and the Compton effect act as absorption
processes. The photo effect has a larger cross section in the relevant energy range which
can be described in Born approximation:

1
32\ 2 8
O-Ilﬁloton - <€7> a4Z5 : gﬂ'?‘? (36)

where € = E,/m.c? is the reduced photon energy [GS08]. Because of the proportion-
ality of equation 3.6 to the fifth power of the atomic number, materials with low Z should
be preferred. Foils made of lithium could serve as an optimal solution, but also foils con-
sisting of polypropylene (PP) or polyethylene (PE) could be used. For the construction
of a new detector not only performance matters, but also stability and long term reliabil-
ity may influence the choice of radiator material. In fact, also foam and fiber materials
provide a good compromise between performance and stability. The TRD of the ALICE
experiment at CERN LHC consists of a sandwich type radiator of ROHACELL foam and
fibers [ALIO1].

14
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3.2.2 Multi Wire Proportional Chamber

The actual detection device is directly connected to the radiator. It catches the emitted
photons and generates traces along the traversing particle. Gas detectors of various kinds,
which are constructable in suiting sizes, are suitable for this. A Multi-Wire Proportional
Chamber (MWPC) is one of these detectors featuring high efficiency and a relatively low
material budget. Such MWPCs have already been employed for the ALICE-TRD and are
the primary attempt for the CBM TRD [Ber09].

In the simplest case, a MWPC consists of two parallel grounded layers, which serve as
entrance and exit window. Centered between this layers the anode wire plane is mounted
and supplied with a positiv potential. If a traversing particle ionizes the gas the generated
electrons will be attracted by the positive potential and travel to the anode wires. The
potential is chosen such, that the multiplication is located in the area of proportional
counters of figure 3.3.
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Figure 3.3: Number of ions collected versus the potential on the anode wire [Ber09].

The multiplication of the ionization electrons is called gas amplification or gas gain.
The development of this gas gain and its avalanche characteristics is depicted in figure
3.4. According to the linearity of the proportional area the charge collected on the wire
can be used to reconstruct the total deposited energy inside the MWPC.

To obtain a two dimensional position information of the incident particle the exit plane
is divided in segmented electrodes (pads). The signal is split and collected by these pads
(see figure 3.5), which are connected to the read out electronics. The position information
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Figure 3.4: Illustration of the development of an avalanche of electrons near the anode
wire [Ber09].

is reconstructed by the relative hight (center of gravity) of the signals of the involved pads.

During the amplification process the produced electrons move quickly towards the anode
wires and induce time-dependent mirror charges in both cathodes, which again generate
a short signal on the pads. As soon as the electrons are absorbed by the anode wire, the
produced ions produce also a signal in a similar way, but more slowly. These signals are
distributed over the segmented pads on the exit plane and are read out by the electronics.

Additional Drift Region attached to a MWPC

Additionally to the described symmetric MWPCs (see chapter 3.2.2) a further drift region
can be attached to decouple the generated signals from the size of the gas volume. Both
types are shown in figure 3.2. With a drift region the generated signal is higher and
extended in time, which simplifies the signal collection for the read-out electronics. The
additional gas volume increases also the probability of the TR photon being absorbed in
the gas volume. The construction of a MWPC with drift region requires an additional
wire plane and the signal generation is slower compared to a symmetric MWPC. This may
be a drawback at the high collision rates in the CBM experiment (see chapter 5). Both
alternatives of MWPCs were investigated for the CBM TRD.

Selection of Gas

The efficiency of the electron - pion separation is directly connected to the absorption
of the produced transition radiation. In contrast to the radiator material, the employed
gas should have a very high atomic number according to equation 3.6. The heaviest non-
radioactive gas is xenon (Xe) with Z = 54. The advantage of noble gases to complex
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Figure 3.5: Read-out pads collect generated signal [Ber09].

molecules is that a large fraction of the deposited energy by the incident particle leads to
ionization, whereas molecules tent to get excited by the energy deposited in the gas volume.

However, a small fraction of the utilized gas has to be a so called quenching gas, e.g.
COs. Secondary photons emitted by excited xenon atoms should be absorbed locally by
the quencher. These secondary photons may be absorbed by any material with low work
function (e.g. metal in the surrounding frame) and may release an electron which leads
to an avalanche and thus in a fake signal. If a xenon atom is stronger excited than the
ionization energy of a C'Oy molecule, this energy can be transfered and contributes to the
wanted gas amplification. This process is called penning transfer [Gar].

The absorption of a photon inside a medium can be described as follows: The intensity
I of a monoenergetic photon beam of energy E after passing trough a material of thickness
d is given by

I(d) = IO . 6_%(E)’p.d (37)

It depends on the mass attenuation coefficient 5 (F) of the crossed material and the
density p [RJ74]. The mass attenuation coefficient for Xe/COy of a mixture of 85 : 15
versus the photon energy F is shown in figure 3.6 [Para, Parb]. The shape of the function
in figure 3.6 is dominated by the photo effect and is influenced by the L— and K —shell
binding energy of xenon up to F ~ 300 keV. Subsequently the Compton effect is dominat-
ing and is followed by pair production at £ =6 MeV. Both effects are depending differently
on the atomic number which causes a strong dependency on the material. Only the photo
effect is relevant in the energy regime of transition radiation [GS08] .

Gas Amplification

The process of avalanche formation based on ionization in the proportional area of a
MWPC is called gas gain. It is defined with the first Townsend coefficient «, the excitation-
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Figure 3.6: Mass attenuation coefficient of Xe/COz in a mixture of 85 : 15.

and ionization cross section of electrons, the ionizing gas and its density as well as the
electric field strength. The first Townsend coefficient specifies the number of generated
electron - ion pairs per path length. It has to be measured for every gas because it can
not be calculated analytically. Integrated over the total drift length, the gas gain is the
ratio of number of electrons N inside an avalanche with respect to the initial number of
electrons Ny:

N ey E(a) a(E)
- = = FE .
No exp/ a(s)ds = exp /Emm dE/dsd (3.8)

Smin

where FE,;, is the electric field strength, which is needed to cause multiple ionization,
a is the radius of the wire and dE/ds is the gradient of the electric field. The wire radius
a has to be small compared to the wire pitch. The electric field in the environment of the
wire is given as a function of the distance r and with A\ as charge per unit length on the
wire:

E(r)= (3.9)

This results in the gas gain of:

N E(@) \a(E)
—_— = E .1
exp /Emm 27T60E2d (3.10)

The charge per unit path length can be described with the capacity C' and the anode
voltage U via
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Q C-U

A= 7= (3.11)

The capacity of a MWPC can be characterized in two different ways. The first method

approximates the anode wires as one anode plane and the MWPC as a parallel-plate

capacitor. For this approximation the distance between anode and cathode has to be

much larger than the anode wire pitch, which is not correct for the CBM TRD prototypes.

The second way is the approximation of every single anode wire as a cylindrical capacitor,

which would take the comparable large wire pitch into account. In this case the capacity
is given as:

C =2mep - (3.12)

L
R
In(3)
with L as the length of the anode wire and the distance of anode to cathode as R.
Applying this to equation 3.11 the gas gain can be expressed by:

N Bl u E
:exp/ 7 ~a(2)dE.
No Epmin (%) e

According to this approximation the gas gain is depending on the distance R of the

anode wires to the cathode plane and decreases at a given anode voltage U and with
increasing distances [BRR08, Rei08].

(3.13)
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4 The FAIR Complex

The future Compressed Baryonic Matter experiment will be set up at the Facility for
Antiproton and Ion Research (FAIR). The FAIR accelerator complex together with its ex-
periments will be located at the Gesellschaft fiir Schwerionenforschung (GSI) near Darm-
stadt in the State of Hesse, Germany. The existing research facilities of the GSI will be
extended and the necessary infrastructure for the upcoming experiments will be provided.
The civil construction has started and according to the current planning it will be finished
by 2018 [ROS13].

In addition to the CBM experiment, a variety of other experiments with a wide range
of research fields will use the FAIR accelerator complex. The planned layout of FAIR
including its experiments is shown in figure 4.1. The new facilities will be built in two
phases. The accelerators and the CBM experiment are part of the first of these two stages
of construction [ROS13].

SIS100/SI1S300

, A
Gsl _. ~ Super- FRS

Accelerator
Facilities
NUSTAR

Figure 4.1: Layout of the future FAIR accelerator complex. The existing accelerators
(SIS18) are shown as blue lines, the additional new FAIR complex is shown as
red lines [FAIT].
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4 The FAIR Complex

In figure 4.1 the accelerator complex is shown as blue and red lines. The main particle
accelerator is the Schwerionen-Synchrotron SIS100/300 which is attached to the existing
SIS18. SIS18 will inject the preaccelerated particles into SIS100/300, which will boost
them to their maximal energy. SIS100 is part of the first stage of construction, SIS300 will
be set up as an upgrade to SIS100 according to the current planning. The difference in the
accelerator settings are the highest achievable magnetic rigidity R of the used magnets.
The maximum values are Rgrs100 = 100 Tm and Rgrszo0 = 300 Tm for SIS100 and
SIS300, respectively. SIS300 will deliver particles at a beam energy of \/syn = 34GeV/c
with 5- 10! particles per bunch. This high number of projectiles results in an outstand-
ing luminosity which is necessary for the precision measurements of CBM and the other
experiments hosted by FAIR.

SIS100/300 delivers its beam also to other devices and experiments. Directly connected
to SIS100/300, the Fragment-Separator Super-FRS produces and separates rare isotopes
which are investigated by the Nu-STAR experiments. The storage rings HESR, NESR
and RESR host additional experiments like PANDA. The APPA collaboration aims to
measure the effects of irradiation to biological cells and material structures. PANDA, Nu-
STAR and APPA as well as their storage rings are part of the second construction stage
of FAIR [AR09]. Figure 4.2 shows an artits view of the finished FAIR complex. As the
CBM experiment is the main topic of this thesis it will be described in detail in chapter 5.

Figure 4.2: Artists view of the FAIR complex. The SIS100/300 is surrounded with forest
[Off14].
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5 The Compressed Baryonic Matter
Experiment

The Compressed Baryonic Matter experiment at the future FAIR complex is a dedicated
heavy-ion experiment which will explore the QCD phase diagram. For this purpose, rare
probes will be investigated, which requires very large statistics. This will be achieved with
the outstanding luminosity the FAIR accelerator complex provides. The high interaction
rate requires a very fast detector design. At the same time, the detector systems have to be
precise enough to resolve the physics observables CBM aims for. Both aspects determine
the design of the future CBM experiment.

A modular design of the CBM experiment allows for the exchange of separate detector
systems. The first setup is dedicated to identify electrons, it is shown in figure 5.1. The
second setup enables the CBM experiment to measure muons, the corresponding setup is
shown in figure 5.2.

RICH
MVD+STS

Figure 5.1: Hllustration of the electron identification setup of the CBM experiment [BF11].

The Micro Vertex Detector (MVD) and the Silicon Tracking System (STS) are placed
directly around the collision vertex enclosed by a superconducting dipole magnet. This
first section of CBM is part of both setups.
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5 The Compressed Baryonic Matter Experiment

Muon detection system
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Figure 5.2: Illustration of the muon identification setup of the CBM experiment [BF11].

For the electron identification setup the first section is supplemented by the Ring Imag-
ing Cherenkov Detector (RICH) and the Transition Radiation Detector (TRD). The TRD
is divided into three stations. The first two consists of four layers each and the third
station completes the setup with two additional detector layers. These TRD stations and
the RICH can be moved for the muon identification setup. The Moun Detection System
(MUCH) is inserted for this setup. The last station of the TRD completes the muon setup
with additional spacial hit information.

The Time Of Flight (TOF) wall is part of both setups, the Electromagnetic Calorime-
ter (ECAL) is only included in the electron identification setup. The Projectile Spectator
Detector (PSD) completes the setup in both cases.

An overview of the experimental area is depicted in figure 5.3. The CBM experiment is
hosted in the same cave as the HADES experiment and uses the same beam line.

5.1 Superconducting Dipole Magnet

The superconducting dipole magnet of the CBM experiment is of H-type with circular
superconducting coils and with two cryostats. It is shown in figure 5.4. It has a large
aperture (gap height 140cm, gap width 260 cm) in order to host the Silicon Tracking
System. The field integral is 1 Tm [FS13].
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5.1 Superconducting Dipole Magnet

Figure 5.3: Overview of the CBM experimental area. The HADES experiment is placed
in front of CBM in the same beam line [Niel3].

Figure 5.4: Schematic drawing of the CBM superconducting Magnet [FS13].
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5 The Compressed Baryonic Matter Experiment

5.2 Detector Systems

In this section, the most important detector systems of the CBM experiment are briefly
introduced. The TRD will be discussed separately in chapter 6.

5.2.1 Micro Vertex Detector

The Micro Vertex Detector (MVD) aims for precise determination of weak decay vertices
in CBM. This measurement requires a highly-granulated, fast, radiation-hard, and low-
mass detector system. Based on this requirements, ultra-thin Monolithic Active Pixel
Sensors (MAPS) will be used in the MVD. These sensors have been developed to exhibit
a high signal-to-noise ratio even after an integrated neutron dose of 10'3 neq/cm? [FS13].

5.2.2 Silicon Tracking System

The CBM Silicon Tracking System (STS) is based on double-sided micro-strip sensors
with outer dimensions of 6.2 x 2.2cm?, 6.2 x 4.2cm?, and 6.2 x 6.2cm?. The front-side
strips are inclined by a stereo angle of 7.5°. Short strips in the sensor corners will be
interconnected to a strip in the opposite corner either via a second metallization layer or
via an additional micro cable. Both options are under investigation. Each sensor (2048
strips) is read out via 16 low-mass micro cables (128 wires each) by 8 free-streaming
ASICs (2 channels each). The cables will be tab-bonded at both ends. Several of these
modules consisting of a sensor, the cables and the front-end board carrying 8 ASICs will be
mounted on a light-weight carbon ladder. Up to 16 of these ladders will be integrated into
a detector station. The STS consists of 8 stations of increasing size with larger distance
from the target (see figure 5.5). The STS will be operated in a thermal enclosure at about
-10°C [FS13].

5.2.3 Ring Imaging Cherenkov Detector

Figure 5.6 presents the Ring Imaging Cherenkov (RICH) Detector which exhibits an ac-
tive area of 2.4m? and 55000 individual readout channels. In 2012, two options for photo
sensors have been investigated as possible alternatives to the Hamamatsu H8500 baseline
solution: the Hamamatsu R11265 with enhanced quantum efficiency due to Super-Bialkali
cathode and a Micro Channel Plate (MCP) sensor from Photonis, XP85012, which is im-
mune against magnetic stray fields. All three sensors have been tested in parallel during
a RICH test beam at CERN PS (see chapter 11). In the beginning of 2012, the develop-
ment of a new FPGA-TDC based readout concept for the RICH was started at the GSI
electronic department. First prototype modules have been successfully tested at CERN
together with the previously used n-XYTER readout, allowing for a direct comparison of
the two different concepts [FS13]. The RICH will contribute to the electron-pion separa-
tion in the momentum range of up to 8 GeV/c, see figure 5.7.

5.2.4 Time Of Flight Detector

An array of Multi-gap Resistive Plate Chambers (MRPCs) will be used for hadron iden-
tification via Time-Of-Flight (TOF) measurements. The TOF wall covers an active area
of about 120m? and is located about 6 m downstream of the target for measurements at
SIS-100, and at 10m at SIS-300. The required time resolution is of the order of 80 ps.
For 10 MHz minimum bias Au+Au collisions, the innermost part of the detector has to
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5.2 Detector Systems

Figure 5.5: Layout of the CBM STS. [FS13]
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Figure 5.6: Technical drawing of the CBM RICH detector system [FS13].
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Figure 5.7: Ring radius in the RICH depending on initial particle momentum. The left
panel shows a simulation, right panel depicts the measurement. Electrons show
up as a constant band whereas the pions exhibit a dependency on momentum
which approaches asymptotically to the electron value at high momenta [FS13].

work at rates up to 20kHz/cm?. Prototype MRPCs built with low resistivity glass have
been tested with a time resolution of o = 40 - 60 ps at 20kHz/cm?. At small deflection
angles the pad size is about 5 cm?, corresponding to an occupancy of below 5% for central
Au+Au collisions at /syy = 25AGeV. In order to optimize the number of gaps, the
pad layout, and the read-out electronics, several prototype MRPCs have been tested with
particle beams at CERN. At large polar emission angles, i.e. in most of the active area
of the CBM TOF detector, the hit rate is of the order of 1kHz/cm?. At these low rates,
a conventional MRPC in multi-strip configuration with thin standard float glass can be
used [FS13].

5.2.5 MUCH System

In order to identify muons from vector meson decays in a large hardronic background, CBM
will use an instrumented hadron absorber. The detection system comprises 6 iron slabs of
varying thickness from 20 cm to 100 cm, with detector triplets behind each iron absorber.
The technology of the gaseous muon tracking detectors is matched to the hit density and
rate: behind the first and second hadron absorber (particle density up to 50 kHz/cm?)
Gas Electron Multiplier (GEM) detectors will be installed. Prototype GEM detectors
with single-mask foils have been successfully tested with particle beams at CERN. Further
downstream, where the hit density is reduced, straw-tube detectors will be used [FS13].

5.3 The Free Streaming Data Readout Concept

One of the challenges in the design and development of the CBM experiment is the high
event rate and the resulting unprecedented high particle density. A triggered and event-
based data read-out would be too slow or cause loss of rare and interesting events. For
that reason the data read-out of the CBM experiment will be taken continuously. The
reconstruction of events will be based on a time-slice procedure which utilizes a global
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5.3 The Free Streaming Data Readout Concept

time stamp of the read out data. The continuous data readout generates an enormous
amount of raw data.

Measurements with high event rates require online event selection algorithms on spe-
cialized hardware which reject the background events (which contain no signal) by a factor
of 100 or more. The event selection system will be based on a fast online event recon-
struction running on a high-performance computer farm equipped with many-core CPUs
and graphics cards (GSI GreenIT cube) [FS13].
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6 Transition Radiation Detectors for CBM

The Transition Radiation Detector (TRD) is, together with the RICH-Detector, the main
electron identification device. With its capability to resolve a traversing particle in x-
y-plane, the TRD additionally contributes to the experiment-wide tracking of charged
particles. For this purpose multiple the x-y-layers of segmented read-out pads are utilized.

6.1 Requirements for the CBM TRD

According to the physics goals of CBM (see chapter 2.2) and the currently planned CBM
setups three main requirements for the TRD can be derived:

A rate capability of more than 10° traversing charged particles per cm? per second
at an interaction rate of 10 MHz [BF11].

e A pion rejection factor of better than 100 at an electron efficiency of 90% [BF11].
This translates into a misidentification probability of less then 1% for a pion to be
an electron.

A position resolution of better than 1 mm to achieve a signal over background ratio
of ~ 30 for the J/v [WYHI10].

e A gas gain variation of less then 10% and/or a calibration scheme to compensate for
it.

6.2 TRD inside CBM

The TRD of the CBM experiment is constructed out of multiple layers of separate detec-
tors. One station of the TRD is made up of several layers. For the current design three
stations are foreseen. The first and second station are out of four layers each. The third
station is constructed out of two layers, which results in 10 detector layers in total. The
configuration of the separate detector modules depends on station, layer and position with
respect to the beam pipe in x-y-plane. Figure 6.1 shows one of the possible setups. The
final design of the TRD depends on the performance of the developed detector modules
and the global experimental layout.

According to the different setups of the CBM experiment at SIS100 and SIS300, with
electron identification and muon identification setup, the position in beam direction z of
each is shown in table 6.1 and 6.2. For SIS100 an additional hadron identification setup is
planned [Muel3]. A visualization of the resulting setups are shown in figure 6.2, 6.3, 6.4
for SIS100 and figure 6.5 and 6.6 for SIS300.
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6 Transition Radiation Detectors for CBM

Figure 6.1: Current schematic setup of the complete TRD. This setup consists of three
stations with four, four and two detector layers. The inner-most detector
modules in station one and two are smaller than the outside ones [Ems13al.

Figure 6.2: Electron identification setup of CBM at SIS100 (v13k). The four layers of the
TRD are shown in yellow. [Ems13a].
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6.2 TRD inside CBM

\ Part z-position start [mm] \ z-position end [mm|] ‘

o STS-Box 0 1200
£ Magnet 0 1600
- Clearance 1600 1800
2 . | RICH 1800 4000
£ = | Clearance 4000 4100
'g A | TRD station 1 4100 5900
< 5 Clearance 5900 6000
% ToF 6000 7200
jS Clearance 7200 7500
< PSD 7500 9000
. Cave End 20050

STS-Box 0 1200
= Clearance 1200 1250
5 Absorber 1 1250 1850
2 Much Detector station 1 1850 2150
-% = | Absorber 2 2150 4200
& > | Clearance 4200 4300
£ 2 | TRD station 1 4300 6100
7“9’ = | Clearance 6100 6200
g ToF 6200 7400
= Clearance 7400 7700
= PSD 7700 9200

Cave End 20050

STS-Box 0 1200
£ | TRD station 1 2600 4400
g = | Clearance 4400 4500
5 A | ToF 4500 5700
< 5 Clearance 5700 6000
o PSD 6000 7500

Cave End 20050

Table 6.1: Positioning of subsystems and detectors at SIS100.
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6 Transition Radiation Detectors for CBM

\ Part z-position start [mm] \ z-position end [mm)] ‘
STS-Box 0 1200
Magnet 0 1600
= Clearance 1600 1800
g RICH 1800 4000
2 Clearance 4000 4100
2 & | TRD station 1 4100 5900
£ T | Clearance 5900 5950
gv A | TRD station 2 5950 7750
ﬁ g Clearance 7750 7800
g TRD station 3 7800 8700
=) Clearance 8700 8800
R ToF 8800 10000
. Clearance 10000 10300
PSD 10300 11800
Cave End 20050
STS-Box 0 1200
Clearance 1200 1250
Absorber 1 1250 1850
Much Detector station 1 1850 2150
Absorber 2 2150 2350
Much Detector station 2 2350 2650
Absorber 3 2650 2850
= Much Detector station 3 2850 3150
£ Absorber 4 3150 3450
- Much Detector station 4 3450 3750
2 £ | Absorber 5 3750 4100
u;g = | Much Detector station 5 4100 4400
ks @ Absorber 6 4400 5400
< B | Clearance 5400 5500
% TRD station 1 5500 7300
= Clearance 7300 7350
= TRD station 2 7350 9150
Clearance 9150 9200
TRD station 3 9200 10100
Clearance 10100 10200
ToF 10200 11400
Clearance 11400 11700
PSD 11700 13200
Cave End 20050

Table 6.2: Positioning of subsystems and detectors at SIS300.
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6.2 TRD inside CBM

’ Geometry ‘ # channels | active area ‘ # detector modules | channel per area ‘
CBM TRD v13h.k,1 258560 125 m? 200 2163 /m?
CBM TRD v13g,m 807424 528 m? 708 1597 /m?
ALICE TRD 1181952 694 m? 540 1703 /m?

Table 6.3: Characteristic quantities of the described CBM TRD [Ems13a] compared to the
ALICE TRD [ALIO1].

iy

Figure 6.3: Muon identification setup of CBM at SIS100 (v13l). The four layers of the
TRD are shown in red. [Ems13al.
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6 Transition Radiation Detectors for CBM

Figure 6.4: Hadron setup of CBM at SIS100 (v13h). The four layers of the TRD are shown
in yellow. [Ems13a].
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6.2 TRD inside CBM
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Figure 6.5: Electron identification setup of CBM at SIS300 (v13g). The three stations (10

layers in total) of the TRD are shown in yellow. [Ems13a].
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6 Transition Radiation Detectors for CBM

Figure 6.6: Muon identification setup of CBM at SIS300 (v13m). The three stations (10
layers in total) of the TRD are shown in red. [Ems13al.
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6.3 Hit Rates of the TRD

6.3 Hit Rates of the TRD

The FAIR accelerator facility will provide a heavy-ion beam on a fixed target in the CBM
experiment. The evolution of the collision has been calculated with UrQMD [MBG99] and
transported through the detector material using GEANT [S. 03]. To obtain an upper limit
of the load for the TRD, only central collisions are assumed. Furthermore, §-electrons are
neglected in this simulation as well as any influence of a magnetic stray field. Taking the
currently proposed positioning and layout of the TRD into account the resulting hit rates
in the TRD can be simulated. The results for the TRD Geometry version v12f are shown
in figure 6.7, 6.8 and 6.9 [Berl3]. The simulation uses a pad width of 7.125 mm for all
pads. The length are integer multiples of 6.75 mm in the inner part and 7.11 mm in the
outer part. With this partitioning it is possible to achieve a hit rate of less than 10° per
pad in all areas of the detector.
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Figure 6.7: Simulated hit rates TRD Station 1. Layer 1 is shown upper left, layer 2 upper
right, 3 lower left, 4 lower right [Ber13].
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Figure 6.8: Simulated hit rates TRD Station 2. Layer 5 is shown upper left, layer 6 upper
right, 7 lower left, 8 lower right [Ber13].
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6.4 Modularized Layout of the TRD
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Figure 6.9: Simulated hit rates TRD Station 3. Layer 9 is shown left, layer 10 right [Ber13].

6.4 Modularized Layout of the TRD

The development and optimization of the subsequent layout of the TRD is an iterative
process. Global experimental properties like hit-rate distributions, positioning inside the
experiment, as well as the performance of the detector prototypes and the necessary read-
out electronics have to be taken into account. The current layout of four TRD stations
with a segmentation into 4 + 4 + 2 layers is planned to consist of an inner and an outer
sector. The hit rate and hit density decreases with larger distance from the beam pipe.
This allows a lower granularity (larger read-out pads) in the more peripheral regions. De-
tector modules of the inner part are planned with a size of 60x60cm?, modules of the
outer part with a size of 100x100 cm?.

The front-end electronics (FEE) which will be utilized in the final experimental setup is
designed with 32 read-out channels. The possibility to increase the number of channels to
64 is under investigation. Since the number of read out channels is fixed, the decreasing
hit density can be compensated by an adapted read-out pad design. The upper part of
figure 6.10 shows a drawing of a prototype with high read-out density and a small read
out pads, while the lower part shows a prototype with large pads and accordingly lower
density of read-out electronics. [Ems13a]

6.5 Design Options

Three different approaches were followed to develop prototypes, that fulfills the experi-
mental requirements.

6.5.1 Prototypes built in Miinster

The prototype built at the Institut fiir Kernphysik of the Westfélische Wilhelms-Universitét
Miinster follows closely the design concept of the ALICE TRD [ALIO1] (see figure 3.2
right). Introducing a dedicated drift and conversion gap makes it possible to decouple
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6 Transition Radiation Detectors for CBM

Figure 6.10: A detector model with small read out pads (high front end electronics density)
in the upper part, and one detector with large pads and low read out density
in the lower part [Emsl13a).

the signal size (deposited charge inside the MWPC) from the size of the gas volume in-
side the MWPC. Within this approach the pad size can be small whereas the absorption
probability of the generated Transition Radiation Photon can be increased by enlarging
the gas volume (distance between entrance window and read out pads). The efficiency for
the signal generation and particle identification will be optimized. Due to the additional
drift region the signal generation is smaller with respect to a MWPC without drift re-
gion. The Miinster style prototypes utilized the SPADIC front-end electronic connected
to rectangular read out pads during the test beam campaigns described in chapter 8.

6.5.2 Prototypes developed in Bucharest

The prototype built at the National Institute for Physics and Nuclear Engineering in
Bucharest is a symmetric double-sided approach with a centered read out-pad plane. The
read out pads are shaped triangular which improves the position resolution. The double-
sided design increases the efficiency due to the enlarged absorption volume. The Bucharest
prototypes use the FASP front end electronic for data read out (see chapter 8).

6.5.3 Prototypes designed in Frankfurt

The prototype built at the Institut fiir Kernphysik of the Johann Wolfgang Goethe - Uni-
versitat Frankfurt am Main uses a symmetric Multi-Wire Proportional Chamber without
additional drift region (see figure 3.2 left). This design concept provides a faster signal
generation and is more robust at the expected high particle fluxes with respect to proto-
types with dedicated drift region. It requires only one plane of anode wires. This simplifies
the construction of the detector. The pads have a rectangular shape and are read out via
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6.5 Design Options

the SPADIC front end electronic.

In addition to the basic symmetric design concept, the Frankfurt-style prototypes em-
ploys a thin foil-based entrance window without any support structure to reduce the mate-
rial budget of the prototypes. Since the entrance window has a size of at least 60x60 cm?,
a special stretching technique has been developed to reduce deformations due to pres-
sure gradients. These prototypes are subject of this thesis. A detailed description on the
prototype construction is given in chapter 7.
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7 Prototype Design and Construction

The development of the CBM TRD prototypes at the Institut fir Kernphysik Frankfurt
are the subjects of the thesis. These prototypes are symmetric Multi-Wire Proportional
Chambers (MWPC) with a thin foil-based entrance window following the principles layed
out in chapter 3.2. Based on early studies of small-size demonstrators [Reill] full size
prototypes were developed, built and tested in test beam campaigns at the CERN PS. In
total four generations of MWPC prototypes as shown in table 7.1 have been developed
and tested. The prototypes are divided in three categories:

1. small proof-of-concept studies with an active area of 8x6cm?.
2. small-size demonstrators with an active area of 15x15cm?.
3. full-size prototypes of 59x59 cm? active area.

The full-size prototypes are of the size currently proposed for the inner region of the
CBM TRD.

’ Serial # ‘ Generation ‘ Active Area ‘ Pad Size ‘ Gas Gap ‘
FFM-p1 ! 1 8x6cm? 7.5%16 mm? 444 mm
FFM-p2 I 86 cm? 7.5%16 mm? 5+5mm
FFM-001 ! II 15%15 cm? 4.7x49.7 mm? 4+4mm
FFM-002 II 15x15cm? 4.7%49.7 mm? 5+5mm
FFM-003 ! 11 15%15 cm? 4.7%49.7 mm? 6-+6 mm
FFM-004 111 15%15 cm? 4.7%49.7 mm? 5+5 mm
FFM-005 111 15x15cm? 4.7%49.7 mm? 6-+6 mm
FFM-006 111 15%15 cm? 4.7%49.7 mm? 4+4mm
FFM-007 ! 2 111 15%15 cm? 4.7%49.7 mm? 5+5mm
FFM-010 v 59x59cm? | 15/45/75 x 7.125mm? | 4+4mm
FFM-011 1Y 59x59cm? | 15/45/75 x 7.125mm? | 54+5mm

Table 7.1: Dimensions quantities of all constructed symmetric MWPC prototypes.

The expected high particle rates at SIS300 require fast and rate-capable detectors. In
this approach thin MWPCs are proposed. According to the short drift times a fast signal
generation and less effects due to space charge can be expected.

The gas gap devotes the size of the distance between the entrance window and the read-
out plane. In the used symmetric setup the anode wire plane divides this distance into

'not used in this work
2not used in beam time campaigns due to high current at applied high voltage for anode wires
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7 Prototype Design and Construction

half. The nomenclature of a geometry with A + Amm dimensions refers to the distances
of the read-out pads to the anode wires, and from the anode wires to the entrance window
respectively. The gas gap defines the corresponding absorption volume for the generated
transition radiation photon and the volume of energy loss for traversing charged particles.
The chosen size of gas volume follows simulations of the energy loss and absorption prob-
abilities [Reill].

The wire pitch describes the distance of the anode wires. This distance influences the
size of the generated avalance, which generates the read-out signal. By this the anode
wire pitch defines an upper limit of the position resolution of a MWPC obtained via the
pad response function.

Technical details and the mechanical setup of these demonstrators and prototypes are
described in this chapter. The required simulations of this prototypes are carried out in
chapter 9, the measurements in lab in chapter 10 and the conducting of the test beam
campaigns in chapter 11. Results of the test beam campaigns are shown in chapter 12.

7.1 Small Demonstrators

The small size demonstrators with an active area of 15x15cm have been built in the pro-
totype generation IT and III. A technical drawing of the basic features is shown in figure 7.1.

The anode wires used for all prototypes are made of gold plated tungsten wires with a
diameter of 20 pm. The entrance window, which serves as the second cathode plane, is
made out of 20 pm thick, aluminized Mylar foil.

A prototype of generation II separated in its components is shown in figure 7.2. A frame
out of hardened fiberglass (G10/Vetronit) holds the pad plane with segmented read-out
pads, connectors for gas in/out feed-through and high voltage for the anode wires. Dis-
tance ledges also made out of hardened fiberglass are glued on to the pad plane and provide
a fixed distance of the pad plane to the anode wires. The anode wires are tensioned with
0.5 N and placed onto these distance ledges. A cap defining the overall high of the gas
volume and housing the entrance window is covering the anode wires. The cap is sealed
with an O-Ring to the main frame. A close up of the technical drawing to illustrate the
distances of the anode wires and the distances of the entrance window to the read-out pad
plane is shown in figure 7.3

The basic features of generation II and III prototypes are identical. The evolution from
II to III only affects the support structure and a minor change in the anode wire setup.
Additionally to the 20 ym thick gold tungsten wires, two ~80 pum thick copper beryllium
wires are added peripheral to the anode wires to restrict disturbances of the electric field
inside the MWPC. The main frame of the generation III prototypes is made out of alu-
minum. It provides the possibility to mount a reference radiator directly on the entrance
window as well as an improved grounding scheme to shield the inner MWPC from external
electric disturbances. A summary of the main mechanical values is shown in table 7.2. A
photo of a generation III prototype is shown in figure 7.5
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Figure 7.1: Technical blueprint of the small demonstrators. The shown prototype of gener-
ation III features the additional possibility to attach a radiator directly to the
entrance window. The MWPC setup is identical to generation II prototypes.
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7 Prototype Design and Construction

Figure 7.2: Small size demonstrator (generation II) split into its components.

Figure 7.3: Close-up of the technical drawing for generation II and III prototypes illus-
trating the distances of the entrance window to the anode wires and to the
read-out plane.
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7.1 Small Demonstrators

Figure 7.4: Small size demonstrator of generation III separated into its components illus-
trating the additional attachment mechanism for the reference radiator.

| Serial # | Generation | Pad Size | Connector | Gas Gap | Frame Material |
FFM-002 1I 4.7%49.7mm? | 8 Channels | 5+5mm Vetronit
FFM-004 11 4.7x49.7mm? | 8 Channels | 5+5mm Aluminum
FFM-005 111 4.7%49.7mm? | 8 Channels | 64+6 mm Aluminum
FFM-006 111 4.7%49.7mm? | 8 Channels | 4+4mm Aluminum

Table 7.2: Key quantities of the constructed small-size demonstrators.
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7 Prototype Design and Construction

Figure 7.5: Photo of a generation III small-size demonstrator. The back side (left picture)
shows the read-out plane with its connectors mounted to the aluminum frame,
which also holds gas in- and outlets and the high-voltage connectors. In the
inner part (right picture) the segmented read-out plane and the wire grid
attached to the distance ledges is shown.

7.2 Full size Prototypes

The Frankfurt-style full-size prototypes match the size of the detector modules in the in-
ner part of the CBM TRD (see chapter 6). These prototypes of generation IV feature a
modular layout to enable an adaption for multiple measurement scenarios and simplify the
construction of these prototypes. The conceptual design of the MWPC is kept identical
to the generation III prototypes, the dimensions of the MWPC have been enlarged to an
active area of 59x59 cm?.

The modular design of the full-size prototypes is shown in figure 7.6. It consists of the
main back panel frame, which holds the pad plane and the anode wires, an intermediate
frame to define the distance of the entrance window to the pad plane and a cap, which
holds the stretched foil of the entrance window. The production of the entrance window
is described in chapter 7.2.1.

The back panel frame is made of aluminum. The pad plane with the segmented read-out
pads is glued to it. A light-weight honeycomb structure is inserted to support the pad plane
and covered with an FR4 plate. The aluminum frame also houses gas in- and outlets and
the high-voltage connectors, as shown in the left part of figure 7.7. A pad plane is designed
to provide read-out pads of three different sizes of 15/45/75 x 7.125 mm? [Ems13b]. The
connectors of the read-out pads are selected such that the 32 channel-based SPADIC 1.0
(see chapter 8) can be used for read-out. The wire grid is made of gold-plated tungsten
wires with a diameter of 20 ym terminated with ~80 ym thick copper beryllium wires.
The wire pitch is 2.5 mm. The single wires of the wire grid are stretched with 0.5 N. The
wire grid is mounted on the distance ledges which are placed on the back panel frame as
shown in figure 7.8. The intermediate frame defines the distance from the read-out plane
to the entrance window. It also contains connectors for a sophisticated grounding scheme.
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Figure 7.6: Technical drawing of the full-size generation IV prototype.

The entrance window cap holds the stretched foil and provides prepared mounting frames
for a potential support structure. An aluminized Mylar foil of 20 um thickness is used.
The aluminized side of the foil is connected to the frame material (see figure 7.7 right) to
avoid electrostatic charging up and to provide the possibility to include the entrance foil
into the grounding scheme. All three modular components of the generation IV prototypes
are mounted with screws and sealed with O-rings. The characteristics of the generation
IV prototypes are summarized in table 7.3.

’ Serial # ‘ Generation ‘ Pad Size ‘ Connector ‘ Gas Gap ‘ Frame Material
FFM-010 v 15/45/75 x 7.125mm? | 32 Channels | 4+4mm Aluminum
FFM-011 v 15/45/75 x 7.125mm? | 32 Channels | 5+5mm Aluminum

Table 7.3: Key quantities of the constructed full size prototypes.

7.2.1 Stretching Procedure for the Entrance Window Construction

The entrance window serves as cathode plane in the utilized symmetric MWPC setup.
The foil experiences deformations due to pressure gradients, which will lead to a variation
of the gas gain of the MWPC (see chapter 9.2.1). To minimize this variation, the entrance
foil is mechanically stretched prior to mounting.
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7 Prototype Design and Construction

Figure 7.7: Left: detailed view on the main frame of the generation IV prototype. This
frame holds gas in- and outlets and the high voltage connectors. The wire grid
is placed on Vetronit distance ledges. The connection of the wire grid to the
high voltage is covered by a capton foil. Right: grounding connection of the
aluminized Mylar foil and the cap frame to the intermediate frame.

Figure 7.8: Photo of the main frame of a full-size prototype. The segmented read-out
plane features multiple pad sizes. The distance ledges hold the wire grid.
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7.3 Radiator Development

The stretching procedure of the foil-based entrance window uses a technique based on
thermal expansion. The originating idea was developed for stretching large area GEM
foils and uses infrared light bulbs [Micl1]. This procedure has been adopted for the con-
struction of the entrance window of the generation IV prototypes [Reul3].

The non-tensioned aluminized Mylar foil is fixed into an acrylic glass frame. This frame
is warmed up to a temperature of 55°C using heating elements sticked on aluminum
plates covering the acrylic glass frame whereas the Mylar foil itself remains at ambient
temperature. The acrylic glass frame evenly expands according to its material constants
in all directions and stretches the fixed Mylar foil. The temperature of the acrylic glass
frame is kept constant using a simple control circuit including the power supplies of the
heating elements as well and a measurement of the frame temperature at four different
positions. A photo of this setup is shown in figure 7.9. A comparison of the non-tensioned
and tensioned Mylar foil is shown in figure 7.10.

Figure 7.9: Setup of the foil-stretching device. The non-tensioned foil is fixed into the
acrylic glass frame covered by the heating elements.

7.3 Radiator Development

The transition radiation (TR) which is necessary for an efficient electron-pion separation is
generated in the radiator material. This efficiency depends on the intensity and the energy
of the transition radiation. Both quantities are determined by the choice of the radiator
material and structure. Radiators can be classified in regular and irregular radiators.
Regular radiators are made of periodic structures of different materials, e.g. multiple
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7 Prototype Design and Construction

A

Figure 7.10: Mylar foil for the entrance window before (left) and after (right) the stretching
procedure. The tension of the foil is suggested by the reflections on the foil.

layers of a foil with a fixed clearance. In irregular radiators these structures and distances
vary around a mean value. Such radiators are for example foam materials or bundles of
a fiber material. Regular radiators can be calculated using an extrapolation of one single
transition. The dependencies of the TR intensity and the spectra of a given radiator can
be extracted by [AW11, CW75]:

AL 4o 1 1 \?
V= % (1 exp(—N 0, - 1 6,)] (7.1
& = oo e N (g ) 1 estoa ) (1)
z l
Qﬁc(v_z-l—w—é) 1
2
6, — Tt patron) (7.3)
k+1

In equation 7.1 Ny represents the number of used foil layers, /1 is the thickness of one
foil layer and [y is the distance between two foils or the thickness of a secondary material
respectively, whereas [; and [y are chosen such that

I <l (74)

Figure 7.11 shows the yield of TR photon production as a function on the photon energy
depending on the Lorentz factor and the thickness of the utilized materials. The rise of
the TR yield in the upper panel is expected due to equation 3.6. A similar behavior can
be observed when varying the distance of the foils I (lower panel in figure 7.11), where
this dependency only slightly influences the peak position of the TR spectra. The en-
hancement of this distance saturates for higher values of ls. The shape of the spectrum
is mostly defined by the thickness of the foils ;. A thicker foil results in a higher peak
position in the (resulting harder) TR spectra, a thinner foil results in a softer TR spectra
(central panel of figure 7.11).

These physical principles are also valid for irregular radiators, but, due to the variations
in [; and [y they are not analytically calculable. The main advantage of irregular radiator
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Figure 7.11: Yield of TR production depending on TR photon energy [AW11]. In the three
panels the Lorentz factor v, and the distances [; and [y are varied.
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7 Prototype Design and Construction

are their mechanical and economical properties: foam-based materials are self-supporting,
fiber and foam materials are commonly used in industry and therefore cost-effective and
easy to purchase. The TR efficiency and the energy spectra of the TR photons can only
be determined experimentally which only allows an empirical optimization of an irregular
radiator material for the CBM TRD.

The optimization of the radiator for a future experiment can only be done in combi-
nation of radiator and read-out detector. The configuration and geometry of the MWPC
determine the peak position in the TR photon spectra which can be absorbed most ef-
ficiently TR absorption, whereas the maximum TR yield in a TR spectrum should be
most efficiently absorbed by the MWPC. Both facts result in an iterative process. Further
simulations on this can be found in [Ber13|. The selection of a radiator not only depends
on its TR efficiency, but also on parameters like technical feasibility.

For the Frankfurt prototypes a set of radiators has been developed and tested during
two test-beam campaigns. The key properties are shown in table 7.4. The ALICE-type
radiator (figure 7.12 top left) is a sandwich structure of ROHACELL HF'71 as enclosure
and polypropylene fiber mats. The radiators R005 and R003 are set up similarly but with
different materials and dimensions. Regular radiators have been built in piles of 50 foil
layers each resulting in stacks of 150 to 350 transitions (figure 7.12 top right) with varying
ly, a radiator prototype with a self-supporting foil structure (pushed in deformations)
tries to mimic this regular configuration with the trade of with local irregularities giving
mechanical support to the radiator (figure 7.12 lower panel). Solid foam material radiators
with different spacing conditions (figure 7.13) are also constructed and tested during the
test-beam campaigns. Microscopic close-ups of selected materials are shown in figure 7.14
and 7.15.

Radiator Configuration | Material () {12) Thickness Transitions
[pm] | [pm] [mm)]

. reinforced HF71 8 75 2x8 2x96
ALICE-type Sandwich Polypropylene fibers 17 50 30 448

. HF71 8 75 2x8 2x96
R005 Sandwich Polyethylene Fibers 15 | 120 103 760

. HF71 8 75 2x8 2x96
R0O3 Sandwich Organic Fibers 13 | 40 226 4200
Foil Radiators Regular Polyethylene Foils 20 500 78-182 150-350
Foil Radiators Regular Polyethylene Foils 20 700 108-252 150-350
Foil Radiators Regular Polyethylene Foils 20 1200 183-247 150-350
Micro-structured Foil | Irregular POKALON N470 24 700 250 350
Type N Foam Polyethylene (Cell-Aire) 12 600 260 425
R002 Foam Polyethylene (hard) 12 600 260 424
RO0O7 Foam Polyethylene (soft) 12 1000 118 116
HF 110 Foam Rohacell HF 110 15 75 30 333
Type H Foam Polyethylene (Cell-Aire) 12 900 177 388

Table 7.4: Properties of the constructed radiators.
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7.3 Radiator Development

Figure 7.12: Photo of the ALICE-type reference radiator (top left), stacks of the regu-
lar foil radiator (top right) and the irregular (micro-structured) foil radiator
(bottom).
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7 Prototype Design and Construction

Figure 7.13: Photo of foam radiators type R002 (hard PE foam) top left and R007 (soft
PE foam) top right. Type H lower left, Type N lower right.
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7.3 Radiator Development

Figure 7.14: Microscopic photo of the used fiber materials. Top: PE fiber as used in R005,
middle: PE fiber mate used for the ALICE-type radiator, bottom: organic
fibers used in R003.
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7 Prototype Design and Construction

Figure 7.15: Microscopic photo of the used foam materials. Top: Rohacell HF71, middle:
soft PE foam (R007), bottom: Hard PE foam used in R002.
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8 Read-Out Electronics

Regarding the large hit rates within the TRD that are expected from simulations, not
only the detector itself has to be capable and fast enough to measure the particle trajec-
tories and particle identification information, but also the read-out electronics has to be
able to process all informations. The generated small signals (see chapter 9.4) have to be
amplified and digitized. According to the expected event and hit rates the resulting high
numbers of read-out cycles the produced amount of raw data has to be as small as possi-
ble. However, this data reduction must not effect the electron identification capabilities.
Current approaches for the read-out electronics are the SPADIC and the FASP chips.

8.1 SPADIC 0.3 Prototype

The Self-triggered Pulse Amplification and Digitization asIC (SPADIC) in its revision 0.3
is the read-out device which has been utilized for the Frankfurt CBM TRD prototypes.
It is the first front-end electronics especially developed for the CBM experiment. For the
analysis of the multi-wire proportional chambers the deposited charge inside the chamber
has been read out with a SPADIC - SUSIBO read out chain. The SUSIBO serves as
communication interface between the SPADIC and the data acquisition and configuration
system. [AFP09]

The used SPADIC 0.3 consists of an analog preamplifier and a pulse shaper combined
with an 8 bit analog-digital-converter (ADC). Its intrinsic white noise is at a level of 800
electrons, which includes a noise of 200 electrons from the shaper unit. It is capable to
handle input signals of 0. ..40 fC. The pulse shaper has a shaping time of 90 ns whereas the
analog-digital-converter provides a digitization rate of 25 MHz. The ADC converts analog
signals into 45 time bins which results in a single event duration of 1.8 us. The SPADIC
in its revision 0.3 provides eight read-out channels. The read-out cycle is event-based.
Further important key characteristics are listed in table 8.1.

The SPADIC chip is hosted on a Xilinx Spartan FPGA evaluation board (shown in
figure 8.1) which is connected to a SUSIBO read-out board. The SUSIBO connects via
USB to the data acquisition system and provides the ability to read out the digitized data
as well as configuration and debugging utilities for the SPADIC.

The controlling and configuration software for the SPADIC v0.3 is the Hitclient, which
was developed specially for this chip. The Hitclient is standalone and enables the user to
configure and read out the SPADIC. It is possible to set trigger thresholds for each of the
eight channel individually, and to adjust the read-out delays between the fired trigger and
starting of the digitalization cycle. A screenshot of the Hitclient software user interface
is depicted in figure 8.2. It consists of a quasi online event display, an online spectrum of
amplitude values and the display of a fast Fourier analysis of the input signals.
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8 Read-Out Electronics

Characteristic

Quantity

Chip Technology
Chip Area
Channel / ADC Area
Number of Channels / ADCs
Power per Channel / ADC
Shaper Noise (ENC)
Shaper Peaking-Time
ADC Resolution
ADC Speed

UMC 0.18 gm, 1P6M, MiMCaps
1.5 x 3.2mm?
40 x 540 / 130 x 120 pm?
26 / 8
3.8 / 4.5mW
200 e + 20 e / pF
95 ns
7-8 bit effective
24 MSamples / s

Table 8.1: Characteristic quantities of the SPADIC 0.3 [AFP09].
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Figure 8.1: Photo of the SPADIC v0.3 on a Xilinx Spartan FPGA evaluation board.



8.2 Fast Analog Signal Processor
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Figure 8.2: Screenshot of the Hitclient software.

8.1.1 Further Development: SPADIC 1.0

The SPADIC revision 1.0 is the continued development on the SPADIC v0.3. Compared
with revision 0.3, version 1.0 provides 32 read-out channels [AK12] and an improved
grounding scheme, which increases the robustness against external noise. Attached to its
carrier board, the SPADIC 1.0 is compatible with the CBMnet protocol, which will be
used in the final experimental setup for data acquisition. CBMnet and SPADIC 1.0 are
capable of free streaming and self-triggered data read-out. The read-out of the data is
implemented through a standardized HDMI connector. The SPADIC 1.0 with its car-
rier board and the read-out interface is shown in figure 8.3. First successful attempts to
connect the SPADIC 1.0 to a Miinster-type MWPC have been performed during the test
beam campaign 2012.

8.2 Fast Analog Signal Processor

The Fast Analog Signal Processor (FASP) is a front-end electronics device for a high
counting-rate TRD. It is based on a ASIC chip which is designed in AMS CMOS 0.35 ym
N-well manufacturing technology. It has eight identical analog channels, each with two
outputs: a fast semi-Gaussian output and a peak-sense output. All channels have a self-
trigger capability with variable threshold. For an easy interconnection with a data acqui-
sition system the chip implements an Input/Output interface working on a request/grant
basis. There are also some specific features for high counting requirements: fast recovery
from overload, good response to double pulses and high rate pulses, base line restoration
due to leakage current and/or high counting rate [WV10]. The FASP read out chip has
been utilized in test beam campaingns on Bucharest-type TRD prototypes [FS13, FS12].
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Figure 8.3: Photo of the SPADIC 1.0 on a carrier board with HDMI connector.
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9 Simulations of the TRD Prototype

The setup of the electric field of a MWPC and the resulting electron and ion drift times,
as well as the gas gain which is directly connected to the read out signal, are key charac-
teristics of a MWPC. To achieve reproducible and comparable results and to study effects
on mechanical variations and deformations, the electric field, the gas gain, and the me-
chanical stability of the foil-based entrance window have been simulated.

The entrance window of the full size 60x60cm? Frankfurt-type MWPC prototype is
based on a thin Mylar foil which is attached to the cap (see chapter 7.2). Nevertheless the
entrance window gets deformed due to differences of the internal to the ambient pressure.
The global experiment-wide gas system in the CBM experiment is going to compensate
for this, but the reaction might be slow compared to external pressure variations (e.g.
related to weather changes) which results in pressure differences in the order of millibars.
The magnitude of the bulging has been simulated with the Abaqus finite element analysis
framework [FEA]. The calculation of the gas gain as well as its variation due to pressure
differences, the electron and ion drift times, and the raw generated signal of the MWPC
have been done with the GARFIELD software package [Vee].

0.1 Simulation of the Electric Field

To consider the available prototypes as specified in chapter 7, the simulation of the elec-
tric field has been done for the three different MWPC geometries of 4+4 mm, 5+5 mm
and 6+6 mm. The entrance window and the read-out plane have been approximated with
two continuous cathode planes in y-direction (perpendicular to the beam axis x) of the
simulation. For each simulation 399 anode wires with a diameter of 20 um at a spacing
of 2.5 mm have been utilized, which results in a total detector height of 100 cm. In the
simulation the detector is treated as open in y-direction which results in deformations of
the electric field in the border areas. This is the reason, why only a center part of the
electric field is shown in figure 9.1 (left part).

The anode wire voltage is directly connected to the gas gain and has to be adjusted
individually for each of the used geometries. The references for this adjustment are the
values obtained in direct operation of these prototypes in the test beam campaigns (see
chapter 11), which have been modified slightly to result in a common gas gain.

The gas mixture used in this simulation consists of xenon (Xe) and carbon dioxide (CO2)
in a default mixing ratio of Xe/CO2 (80/20). For studies on gas variations a mixing ratio
of Xe/COz3 (90/10) has also been simulated. Ambient pressure and temperature have been
kept constant at values of p =1atm and T =300 K.

In figure 9.1, the equipotential lines and the electron drift lines are shown for a central
area in the 4+4mm MWPC geometry at an anode wire voltage of 1940 V. The electron

65
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Figure 9.1: Electric field (left) and electron drift lines (right) of a central cell in a 444 mm
MWPC geometry [Hell3b].

drift lines indicate the path of the generated ionization electrons. This structure (cell) re-
curs which results in a regular structure of the electric field. This allows that the following
simulations of the gas gain and the electron/ion drift times are reduced to one non-border
cell.

0.2 Simulation of the Gas Gain

The simulation of the gas gain has been performed for two different mixtures of Xe/CO,
(80/20 and 90/10) for all three detector geometries (4+4 mm, 5+5mm and 6+6 mm) at
three different anode wire voltage settings. In this simulation the area of the central cell
of the detector has been filled evenly with ionization electrons which are accelerated by
the electric field along the drift lines. The statistical mean of the gas gain generated by
the avalanche is calculated via integration of the first Townsend coefficient determined by
the Magboltz software, over drift length. With this calculation the mean of the gas gain
(gain) of each wire is obtained.

In figure 9.2, the spatial distribution of the gas gain in the central cell of the MWPC is
depicted. The anode voltages have been selected such that the values for the gas gain are
comparable for all used layouts. A small drop of the gas gain at the borders of the cell is
visible for all geometries. For electrons generated at the edge of a cell, the drift length in
areas of large field strength (proportional area) is shorter compared to electrons generated
perpendicular to the wire. Because the dominant part in gas gain generation happens in
the proportional area, spatial differences in the absolute values of the gas gain generation
occur.
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Figure 9.2: Spatial distribution of the mean gas gain for all three geometries using Xe/CO,
(80/20). Top: 4+4mm at 1940V anode wire voltage, middle: 5+5mm at
2220V anode wire voltage, bottom: 64+6mm at 2500V anode wire voltage
[Hel13b].
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9 Simulations of the TRD Prototype

In table 9.1 the mean values of the gas gain for all three detector geometries and for the
gas mixtures of Xe/CO2 (80/20) and Xe/CO2 (90/10) are shown. The standard deviation
is given as error, which is about 2% for all given values. Following this deviation the
spatial variations of the gas gain are negligible for central cells. Besides the cells on the
border of the MWPC the gain uniformity is flat for the complete detector area.

Xe/CO9 (80/20 Xe/CO9 (90/10
(Geometry Anode éoltagi ‘ / (g)az'n> Anode \//bltag((e ‘ / ( gizin)
1820V 1003421 1770V 1027422
44+4mm 1890V 1592436 1830V 1545436
1940V 2224453 1880V 2181453
2090V 1047420 2020V 995420
5+5mm 2160V 1568+33 2100V 1602434
2220V 2227449 2150V 2166+49
2350V 1029419 2280V 1024419
64+6mm 2440V 1632+£32 2360V 1562+31
2500V 2229446 2420V 2154+46

Table 9.1: Mean gas gain for all three geometries using Xe/CO2 (80/20) and Xe/COq
(90/10) at different anode voltages [Hell3b].

The comparison of the three simulated geometries according to the utilized gas mixture
shows that the anode wire voltage which is required to generate a desired value of the gas
gain is lower for Xe/CO3 (90/10) than for Xe/CO2 (80/20). In other words, for a fixed
anode voltage the gas gain is higher for Xe/CO2 (90/10). The higher amount of xenon in
the gas mixture goes along with a higher ionization cross section, but the dominant source
for the larger gas gains are the different Penning-transfer rates. The Penning effect de-
scribes an ionization process in which an excited gas atom ionizes another atom of the gas.
If an energy level of an atom or molecule is higher than the ionization energy, the excited
atom can return into its ground state via photon emission or direct collision with another
gas atom which is then ionized. In a gas mixture of xenon and carbon dioxide, the COq
molecules have three excitation states with energy levels of 12.2eV, 13.2eV and 15.0eV.
These are all higher than the minimal ionization energy of 12.13eV for a xenon atom
[Gar]. The Penning transfer rate characterizes the fraction of excited CO2 molecules with
a larger excitation energy than the minimal ionization energy of xenon, which contribute
to the ionization of the xenon. This fraction is severely different in both gas mixtures: for
Xe/CO2 (80/20) the Penning transfer rate is about 11%, where as for Xe/CO2 90/10 it is
about 44%. This causes the mean gas gain to be larger for the Xe/CO2 90/10 mixture at
a fix anode voltage.

Figure 9.3 depicts the mean gas gain factor for the three used geometries depending on
the applied anode voltage for both gas mixtures. According to the almost linear shape
in this logarithmic representation, the exponential character of the gas gain (see equation
3.10) can be verified. The difference for both gas mixtures can be clearly seen. For the
444 mm MWPC the values of the gas gain of Xe/CO4 (90/10) at the lowest anode voltage
of 1800V are almost a factor 1.44 larger than for the 80/20 mixture, which increases for
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Figure 9.3: Mean gas gain factor depending on the applied anode voltage for Xe/COq
(90/10) and Xe/CO2 (80/20) for all three used MWPC geometries [Hell3b].

the highest anode voltages of 3000V up to a factor of 2.12. Such large anode voltages
will most likely not be applied to a MWPC due to possible damage caused by sparks.
The mean of the gas gain factor for the 44+4mm MWPC filled with Xe/COy (90/10)
is a factor 1.754+0.2 larger. The resulting values for the 5+5mm geometries are at a
mean of 1.58+0.15 and for the 6+6 mm at a mean of 1.47£0.12. The divergence at large
voltages can be explained with the first Townsend coefficient, which is different for both
gas mixtures but additionally shows a dependency of the applied electric field, which varies
with the applied anode voltage [Hell3b].

9.2.1 Gas Gain Variation due to Expansion

The Frankfurt type MWPC prototype uses a thin foil-based entrance as one of the cathode
planes. This foil will experience deformations due to unavoidable differences in the inner
and the ambient pressure. These pressure differences lead to a bulging of the foil. To
simulate the effects on the gas gain, the distance of the left cathode (entrance window) is
varied in steps of A d =5 um and the mean gas gain factor Gain(d) is calculated. The rel-

ative gain change ggzzgg; is determined with the help of the gas gain factor at no distance

variation Gain(0). In figure 9.4, this relative gain is shown for different anode voltages
depending on the distance variation d for each detector geometry filled with Xe/COq
(80/20). The anode voltage has been chosen such that the base value of Gain(0) is equal
for the three geometries at a given voltage. All three geometries show the same behavior
with changing distance d. The increase for smaller anode-cathode distances (d < 0) and
the decrease for larger anode-cathode distances (d > 0) are expected according to equation
3.13. The relative gain change of the 4+4 mm is more sensitive to a distance variation
while the 6+6 mm MWPC shows the smallest changes and is thus more robust against
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9 Simulations of the TRD Prototype

these variations. Such behavior can be explained by the fraction of the distance variation
with respect to the total dimensions of the MWPC: a variation of d/4 mm is larger than
the d/6 mm which results in larger variation in the gas gain.

According to chapter 6.1 one of the experimental requirements for the TRD is a gas
gain uniformity with variations of less thanA Gaing,., = + 10% for the total gas gain
factor. Applying this limit to the calculation of the gas gain with distance variation, it
results in a lower (AGaing,.: = — 10%) and an upper (A Gaingg, = + 10%) limit for
the position of the thin foil-based entrance window. Figure 9.5 shows the gain variation
for each geometry type. These values have been used to calculate the resulting positioning
limits shown in table 9.2.

’ MWPC ‘ Anode Voltage ‘ (gain) ‘ dpmin o — ‘ (dmin) ‘ (dmaz) ‘

1820V 1003£21 | -109 pm | 126 pm

444 mm 1890V 1592436 | -103 pm | 119 pm | -1044+4 pm | 12045 pm
1940V 2224453 | -99pum | 115 pm
2090V 104720 | -124 pm | 143 pm

5+5mm 2160V 1568+33 | -118 um | 136 um | -118+4 pum | 13745 pm
2220V 2227449 | -114 pm | 131 pm
2350V 1029419 | -140 pm | 161 pm

646 mm 2440V 1632+32 | -132 pum | 153 pm | -133+5 pm | 15446 pm
2500V 2229446 | -128 pm | 147 pm

Table 9.2: Limits of maximal distance variations forA Gaing,.. = + 10% [Hel13b].

The values of the deformation limits d,,;, and d;,q. for the 4+4 mm are between 99 and
126 um, the same values are up to 128-161 um for the 6+6 mm MWPC. Comparing each
separate detector geometry with its different anode voltage settings to each other only a
small spread of the values is observed. Here the gas gain only exhibits small changes due
to voltage variations. This behavior can be seen in figure 9.5 for all used geometries. Due
to the small changes according to voltage variations the mean value for the minimum and
maximum deformation (dy,in) and (dpq) can be calculated giving the range of values for
a gain stability of A Gaing,., = + 10%. These values are also listed in table 9.2 [Hel13b].

Following equation 3.13 the variation of the anode-cathode distance is not influenced
by the change of the gas mixing ratio. The used gas mixture is accounted for by the use
of the first Townsend coefficient. When selecting comparable base value of Gain(0) the
changing of the gain according to distance variations are equivalent. Figure 9.6 shows the
simulated gas gain variation for the 4+4 mm MWPC depending on d for an anode voltage
of 1770V for Xe/CO2 (90/10) and 1820V for Xe/CO2 (80/20). Both curves are lying on
top of each other. This is explained by the independence of the gain variation by the gas
mixture.

Following the results of the gas gain simulation, a set of criteria for the usage of the
foil based entrance window can be derived under the requirement of a gain uniformity
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9.3 Electron and Ion Drift Times
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Figure 9.6: Gas gain variation of the 4+4 mm MWPC for Xe/CO2 (80/20) and Xe/COq
(90/10) [Hel13b].

of gzzzggg = +10%. Due to the overpressure during operational conditions a dent of the

entrance foil towards the anode wires can be prevented. This overpressure results in an
appropriate bulging of the foil, which will vary with respect to the ambient pressure. When
requesting a gain uniformity of 10% the maximal acceptable bulging of the entrance win-
dow is 120+5 ym for the 4+4mm MWPC and 15446 pm for the 64+6 mm MWPC. The
calculations of the corresponding pressure differences with a mechanical simulation of the
MWPCs are shown in chapter 9.5.

0.3 Electron and lon Drift Times

Since the CBM experiment will be operated at event rates of ~10 MHz, fast detectors are
required. Apart of read-out electronics and data acquisition capabilities, the read-out time
of gas detectors like the TRDs is dominated by the drift time during the signal generation.
The drift time describes the temporal interval in which the generated electrons and ions
move with the drift velocity vp towards the anode wire or cathode planes and induce
the signal. If the drift times are too large, the signal generation decelerates, and signals
from two different events overlay and can not be separated anymore (pile-up effects). The
time resolution of such events depends on the difference in time if the initial electrons
of the first avalanche which is determined with via the electron drift time [Leo94]. The
ionization happens along the complete path of the traversing particle. For the drift time
determination the first electron arriving at the anode wire is decisive. The distance to
the anode wire of this first electron can not be larger than half of the wire pitch due to
geometrical reasons. An uncertainty of the drift time of the initial electron occurs due to
this distance. To simulate the time resolutionA ¢ of the three used detector geometries,
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9 Simulations of the TRD Prototype

electrons are distributed evenly inside the central cell (analog to chapter 9.2) and the drift
times for electrons and ions are calculated. The ion mobility has been implemented into
the simulation by using single ionized xenon (Xe™) [RT00].

The electron drift times for the three used MWPC geometries for a gas mixture of
Xe/CO2 (80/20) are shown in figure 9.7, figure 9.8 depicts the results for Xe/CO2 (90/10).
The ion arrival times on the cathodes are shown in figure 9.9. The electron and ion drift
times along the y-axis are homogeneous. Close to the anode wire, the electron drift times
are only a few nanoseconds which leads to a time divergence of A ¢t ~30ns. On the edges
of the cell, the drift times rise significantly. Table 9.3 summarizes drift times for Xe/COq
(80/20) as well as for Xe/CO2 (90/10).

| MWPC | Xe/CO; | Anode Voltage | (Tp) | Tomas) | At ]
4+4mm 1940V 0,0540,028 s | 0,098+0,010 pus
54+5mm | 80/20 2220V 0,065:£0,034 s | 0,122+£0,010 us | ~30ns
646 mm 2500 V 0,0770,041 ps | 0,14530,010 pis
4+4mm 1880V 0,077+0,040 ps | 0,145+0,010 pus
54+5mm | 90/10 2150V 0,095:£0,050 ps | 0,181+£0,010 us | ~40ns
646 mm 2420 V 0,1120,060 pis | 0,216+0,010 ps

Table 9.3: Summary of drift times for both gas mixtures and all three used MWPC ge-
ometries [Hell3b].

The maximum drift times at the edge of a cell can be translated into an average max-
imum hit rate of 10.2 MHz for the 4+4mm MWPC, 8.2MHz for the 5+5mm MWPC,
and 6.9 MHz for the 6+6 mm MWPC. Compared with the hit rate simulation in chapter
6.3 all MWPC prototypes with Xe/CO3 (80/20) are per design fast enough to handle the
expected hit rates of ~0.1 MHz. The comparison of Xe/CO2 (80/20) to Xe/CO2 (90/10)
results in a longer electron drift time for all MWPC prototypes. The achieved time reso-
lution isA ¢t ~40ns. The 6+6 mm MWPC as the slowest detector only reaches a hit rate
of 4.6 MHz, which is still 46x faster than the hit rate simulation requires. The benefit of
a higher TR photon absorption probability when increasing the fraction of xenon in the
detector gas can excepted because the drawbacks concerning the drift time are still above
the simulation which defines the requirements.

9.4 Signal Simulation
The induced raw signals of the utilized MWPC prototypes have been simulated by using
electron and ion drift information. For this simulation, electron/ion pairs have been dis-

tributed according to the avalanche topology obtained by figure 9.10. This topology has
been approximated by the following conditions:

e The opening angle « of the avalanche is 90°.
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Figure 9.7: Electron drift times for Xe/COz2 (80/20) for the 4+4 mm, 5+5 mm and 646 mm
MWPC (top to bottom) [Hell3b].
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Figure 9.8: Electron drift times for Xe/COz2 (90/10) for the 4+4 mm, 5+5 mm and 646 mm
MWPC (top to bottom) [Hell3b].
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Figure 9.9: Ion arrival times for the 4+4 mm MWPC at an anode voltage of 1940 V on the
left, and for the 5+5mm MWPC at 2220 V on the right side [Hell3c].

e The longitudinal distribution (along the beam axis z perpendicular to the simulated
cell) is a half Gaussian distribution.

e The distribution along the wire axis is a full Gaussian.

The actual values of the utilized distributions are selected to mimic the given topology
and dimensions according to figure 9.10. Following these distributions 1000 electron/ion
pairs have been placed randomly inside the avalanche. The ions are propagated towards
the read-out pad plane and the induced signals have been added. The resulting raw signal
on the read-out pads of the 4+4 mm MWPC filled with Xe/CO4 (80/20) is shown exem-
plary in figure 9.11.

The simulated signal features a very fast rising edge according to the implied ion dis-
tribution. The falling edge of the signal shows the expected asymptotic decrease. The
absolute height of the signal is created by the number of ions placed in the cell.

9.5 Mechanical Simulation of the Entrance Window

The Frankfurt type MWPC prototype utilizes a thin foil based entrance window which
will be deformed when it experiences pressure differences of its inner gas volume to the
ambient pressure. To quantify the expansion due to this pressure differences, mechanical
simulations are performed. The finite-element software package Abaqus [FEA] has been
used for this simulation in which the production and stretching procedure of the entrance
window (see 7.2.1) has been emulated. Abaqus uses a tight-knit lattice to determine me-
chanical properties of simulated objects. The expansion of the tensioned foil has been
calculated for a set of different pressure values [Reul3].

Within the simulation two acrylic glass frames are generated and the Mylar foil is fixed
between the frames. The temperature of the acrylic glass frames is set to 55°C, while
the mylar foil keeps room temperature (20 °C). The deformation and the resulting tension
applied to the foil is calculated according to the expansion coeflicients, Poisson’s ratio and
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Figure 9.10: Two-dimensional displays of the electron density in an avalanche [BRROS|.
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Figure 9.11: Simulation of the induced signal on the read-out pads for the 4+4 mm MWPC
filled with Xe/CO4 (80/20) [Hell3c]|.
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Figure 9.12: Mechanical simulation of expansion of the entrance window. The deformation
is color coded, the tight-knit lattice of the Abaqus simulation framework are
visible [Reul3].

elastic modulus of the used materials. After stretching the foil, an additional volume with
a base area of 59x59cm? and the required overpressure is attached to the foil and the
expansion is calculated in a second simulation step. A screen shot of the resulting object
is shown in figure 9.12.

The resulting expansions are displayed in figure 9.13 as a function on the applied over-
pressure, the error bars shown in this plot are given by the Abaqus software. According
to the simulation of the gain variation (see chapter 9.2.1), the limit of deformation for
the largest 6+6 mm MWPC geometry is 15446 pym. This value is exceeded already at
an overpressure of 20 pubar. For comparison, the ALICE TRD with a reinforced and self-
supporting radiator directly placed as entrance window deviates from a flat surface by
3.25 mm at an overpressure of 1 mbar [ALIO1].
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Figure 9.13: Expansion of the foil based entrance window depending on the allied over-
pressure [Reul3|.
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10 Validation of Prototype Characteristics

In a set of test measurements, the constructed prototypes were characterized with respect
to the mechanical stability of the entrance window, absolute gain factors, gain homogeneity
and the energy resolution.

10.1 Mechanical Stability of the Entrance Window

For the mechanical stability tests of the full-size prototypes thin foil-based entrance win-
dow, a mock-up frame with the exact same dimensions has been used. A stretched and
tensioned Mylar foil (see 7.2.1) has been glued on a wooden frame. The mock-up frame
was covered with a G10 plate on the backside. Two gas inlet and outlet as well as a
connection pipe to a differential pressure sensor have been attached. The gas outlet was
connected to a pig tail. The mock-up setup has been proven to be sufficiently gas tight
for this tests. A photo of the setup is shown on figure 10.1.

Figure 10.1: Setup for the expansion tests of the foil-based entrance window [Reul3].

The mock-up has been filled with compressed air via a pressure regulator. The gas flow
and the attached pig tail with its intrinsic resistivity generate an overpressure inside the
mock-up. The differential pressure (overpressure over ambient pressure) was measured
and the resulting expansion of the foil could be directly observed using a caliper rule cen-
tered on the middle of the foil based entrance window. The gas flow has been regulated
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to generate different values of overpressure inside the mock-up, the resulting expansion
has been recorded and displayed in figure 10.2 in comparison to the simulated expansion
[Reul3d].
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Figure 10.2: Measured expansion in comparison to simulation [Reul3].

The depicted measured values in figure 10.2 include approximated systematic errors of
0.2mm for the expansion and 20 pbar for the differential pressure measurement. The error
which is introduced to a non-centered expansion measurement can be neglected. Even if
the off-center variation is more than 5cm the corresponding variation in expansion is less
than 0.15 mm on the highest simulated overpressure of 450 ubar, which is due to the large
area of 60x60 cm? of the utilized foil.

The measured and the simulated values for the expansion of the foil are in very good
agreement for small pressure differences (<100 ubar). For larger values a deviation is vis-
ible but measurement and simulation are still in agreement within the error bars. This
measurement validates the simulation and the conclusions for the gain variation deduced
on that.
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10.2 Gas Gain Measurements

10.2 Gas Gain Measurements

The gas gain of a Multi Wire Proportional Chamber (MWPC) can be measured via the
current at the anode wires, which is generated if the MWPC is exposed to ionizing radia-
tion. To determine the gas gain G the generated current at the anode wire I4 is compared

to the primary current Ip, which is generated by the utilized source:
a-1a (10.1)

Ip

This allows a measurement of the absolute gas gain as well as a relative measurement
of the gas gain. The relative gas enables a fast measurement when varying parameters of
the MWPC with a simple experimental setup only measuring the anode current assuming
a fixed primary current. The absolute gas gain requires a more sophisticated setup, but
allows the direct comparison to the simulations and serves as input for additional studies.

10.2.1 Absolute Gas Gain

Equation 10.1 can be adopted by replacing the primary and anode currents by measurable
quantities:

c_fa_In—Ip

Ip R-Np-e

The anode current is composed of the actually measured current I, and the dark current

Ip. The dark current can be determined by measuring without an ionizing source and has

to be subtracted. The primary current Ip can be composed by the rate R of absorbed

photons and electrons released per primary ionization Np multiplied with the elementary

charge e . The rate of photons corresponds to the measured signal rate and the number

of released electrons per ionization is determined via the energy of the utilized radiation
and the ionization potential of the used gas mixture:

(10.2)

Np=— (10.3)

For the measurement of the absolute gas gain a mix of Ar/CO2 (80/20) has been used
with E; = 27.6eV. The spectrum of the utilized ionizing *Fe source is composed of the
Fe-K, line at F = 5.9keV and the argon escape line for the full size generation IV
MWPC prototypes. Therefor a combined average primary energy of F =5.6keV, which
results as the weighted mean value of both energies. The rate is composed of a directly
counted rate with correction factors:

Ry
R_il—RM‘T_RD (10.4)

Where Rj; is the measured ionizing radiation, Rp was measured without source and
has been used for correction of background and noise. Additionally the dead time 7 of the
used electronics has to be taken into account for each measurement. It has been approxi-
mated with 7 =15ns [Dil13].

Figure 10.3 schematically shows the experimental setup of the absolute gas gain mea-
surement. High voltage connections towards the prototype are shown as black lines, red
lines depict the directly decoupled analogue signals through a preamplifier and green lines
represent NIM signal transmission from a discriminator to a counter if a given trigger

83



10 Validation of Prototype Characteristics
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Figure 10.3: Schematic overview of the absolute gas gain measurement setup: high voltage
connections are shown as black lines, red lines depict the directly decoupled
analog signals and green lines represent NIM signal transmission [Dil13].

threshold is exceeded. For ionization measurements a °°Fe source has been used.

The measurement of the primary ionization is the dominant source of measurement
errors in this given setup. It is sensitive to the choice of the trigger setup, which has
to be set low enough, such that all primary ionization particles are counted and above
a given noise level, that the background noise does not lead to miscounting, which can
not be corrected by Rp. Diminutive variations of this trigger thresholds already lead to
variations of £10% which substantiates an error approximation of the measured rate of
+10% which is propagated. According to the dominance of this error, the uncertainty of
the resulting gas gain has also been approximated with % = +10%. All other potential
sources of measurement errors have been found to be negligible.

In figure 10.4 and 10.5 the measured absolute gas gain depending on the applied anode
voltage is shown together with simulated values [Hell3a] for a gas mixture of Ar/COq
(80/20). The simulations use a Penning transfer rate of 37% at normal atmospheric pres-
sure [Hel13a|, although the measurement has been performed at an differential overpressure
of 600 ubar and 610 ubar over atmospheric pressure. As shown in chapter 3.2 the MWPC
has to be operated in the proportional region. Regarding the functional dependency of
the gas gain on the high voltage an exponential behavior should be seen, which could be
verified with an exponential fit to the data (red line). As expected due to the smaller
gas volume and the smaller absorption length the 444 mm prototype shows a comparable
gas gain already at 1925V (2300V for the 5+5mm MWPC). The discrepancy between
measurement and simulation can be explained with the sensitive rate measurement and
the differences in pressure for both scenarios. Taking this into account the simulated and
the measured values are in good agreement, which indicates the correctness of the further
depicted electro static simulations in chapter 9. According to the exponential fit and the
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Figure 10.4: Measurement [Dil13] and simulation [Hell3a] of the absolute gas gain for the
generation III 5+5mm prototype (FFM-004) depending on the applied high
voltage. The measurement has been performed with a gas mixture of Ar/CO-
(80/20) at an differential overpressure of 600 pubar. The simulation utilizes a
penning transfer rate of 37% without overpressure [Hell3a]. The red lines
indicate exponential fits to the data [Dil13].
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Figure 10.5: Measurement [Dill13] and simulation [Hell3a] of the absolute gas gain for
the generation III 444 mm prototype (FFM-006) depending on the applied
high voltage. The measurement has been performed with a gas mixture of
Ar/CO2 (80/20) at an overpressure of 610 ubar. The simulation utilizes a
penning transfer rate of 37% without overpressure [Hell3a]. The red lines
indicate exponential fits to the data [Dil13].
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properties of the further used SPADIC read out device (see chapter 8) a high voltage
setting can be derived to use the dynamic range of the SPADIC in an optimal way.

10.2.2 Uniformity of the Relative Gas Gain with Full Size Prototypes

To verify the homogeneity of the gas gain taking the bulging of the entrance window
into account a position dependent scan of the relative gas gain has been carried out. By
assuming a constant primary current Ip in equation 10.1 the measured anode voltage
directly represents the relative gas gain only modified by a constant factor. Figure 10.6
depicts the measured anode wire current of the full-size generation IV prototype with
the 4+4mm geometry being irradiated with the °Fe source. The used gas mixture is
Ar/CO2 (80/20). The x- and y-axis represent the position of the °Fe source in front
of the prototype, the color-coded z-axis depict the measured current in nA at a given
position. The applied high voltage was set to 1600 V and the differential overpressure has
been set to 43+1 pbar [Ball3].
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Figure 10.6: Measured anode wire current (color coded) on the full size 444 mm (FFMO011)
at 4341 pubar differential overpressure and 1600V applied high voltage
[Ball3).

The shape of the distribution shown in 10.6 reflects roughly the inverse shape of the
mechanical simulation when overpressure is applied (see chapter 9.5 especially figure 9.12).
This measurement procedure is sensitive to any change in the absolute gas gain which
enables it to be utilized to check any prototype or later final MWPCs for anomalies
[Kra06]. During the construction of the FFMO010 prototype three contiguous anode wires
have been damaged and need to be repaired. The left part of figure 10.7 depicts the
resulting scan on this prototype. The area of the damaged wires modify the electric field
configuration and lead to the visible inhomogeneities (red band). The right part of 10.7
shows the scan after the anode wires have been repaired.
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10.2 Gas Gain Measurements
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Figure 10.7: Position-dependent scan of the relative gas gain of the FFM-010 prototype
at =400 pbar and 2000V anode wire voltage. In the top figure the damaged
anode wires show up as a resulting band of higher gas gain. The lower plot
depicts the same prototype with same conditions and repaired anode wires
[Ball3].
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10 Validation of Prototype Characteristics

10.3 Energy Resolution

The characteristics of the total deposited charge inside the MWPC is essential for the pur-
pose of particle identification (see chapter 12.4) in a TRD. Therefore the energy spectrum
of a ®Fe source has been recorded in lab measurements. According to the width of the
measured spectrum conclusions on the energy resolution of the used MWPC prototype
can be drawn [Dil13].

The generation III prototypes FFM-004 and FFM-006 have been equipped with a
SPADIC read-out chain and irradiated with a 5°Fe source. The raw signal digitized by the
SPADIC has been noise corrected with a covariance matrix based algorithm (see chapter
12.2 and especially 12.2.1).

The signal amplitudes of the time bin with the maximal value in the noise corrected
SPADIC v0.3 signal have been summed up and filled into a histogram, so that one entry
in the energy spectrum is represented by this value. According to the efficient perfor-
mance of the correction algorithm and the very low electric noise in the used laboratory
environment no further cluster finding is necessary to obtain this energy spectrum. This
measurement has been performed at different high voltage settings to identify the optimal
conditions for the energy resolution of the MWPC prototype. The limiting factor in this
procedure is the dynamic range of the SPADIC v0.3 read out chip. The high voltage
settings have been sufficiently large to generate processable raw signals and small enough
to not generate overshoots and overflows in the SPADIC.
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Figure 10.8: Unscaled energy spectra (deposited charge) measured with the 444 mm ge-
ometry generation III prototype FFM-006 irradiated with a ®*Fe source. The
fit of the two Gauss functions to the argon escape and *°Fe-K,, is shown as
red line [Dil10].
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10.3 Energy Resolution

The spectra obtained with the described method is shown in 10.8 based on ~/100.000
recorded events. The sum of the signal amplitudes are shown on the x-axis representing
the total deposited charge, which is directly correlated with the initial energy. At a value
of ~ 130 [a.u.] the maximum of the argon escape distribution is located, at ~ 280 [a.u.]
the distribution for the Fe-K, can be found. The lines are broadened with a Gaussian
shape according to the energy resolution of the utilized MWPC. The two peaks are fit-
ted with two separate gauss distributions and the corresponding parameters amplitude, o
and mean position of the gauss function are extracted. Figure 10.8 also contains the two
Gaussian fits drawn as red lines. With the parameters mean and o the relative energy
resolution can be calculated via:

o
Mean

Table 10.1 shows the parameters of the measurement shown in figure 10.8 and the re-
sulting energy resolution. The given errors are the statistical errors obtained via the fitting
procedure.

AFEciative = (105)

Fit Parameter
Amplitude o Mean

argon escape | 110.02+£1.99 | 27.31+0.80 | 136.40+0.53 20.02%40.51%
Fe-K, 1083.21+4,76 | 33.75+0.11 | 278.78+0.12 12.1140.03%

Spectral line Energy resolution

Table 10.1: Fitted parameters of the Gauss function and the resulting relative energy
resolution of the 444 mm geometry generation III prototype FFM-006 [Dil13].

The relative energy resolution is translated in an absolute energy resolution by multi-
plying with the actual value of the regarded energy of the spectral line:

AEjabsolute = AErelatiUe . Espect’ral (106)

The position of the Fe-K, spectral line is 5.9keV, which leads to an absolute energy
resolution of:

AFEpsorute = 12.11% - 5.9keV = 0.71 keV (10.7)
For scaling and calibration of the energy spectra are weighted with their actual energies:

E55F - E

e— Ko argonescape

Uscaling = (108)
M55 Fe— K, — Margonescape

The position of the argon escape peak is at 2.9keV, which finally leads to a scaling
factor for the given setup:

5.9keV — 2.9keV
Qscaling =
scaling = To78 78 — 136.4

This value is only valid for the used setup of the presented measurement. This takes
voltage setting, used gas mixture, signal extraction and clustering algorithm into account.

= 0.021 (10.9)
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10 Validation of Prototype Characteristics

This procedure has to be redone for any change in the used setting.
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Figure 10.9: Energy calibrated spectrum of the 444 mm geometry generation III prototype
FFM-006. The Fe-K, (blue) and argon escape (red) positions are marked
with lines [Dil10].

Figure 10.9 shows the energy calibrated (scaled) spectrum for the 444 mm geometry
generation III prototype FFM-006. The fitted position of the spectral lines are marked
as red and blue lines. To study the energy resolution for different high voltage settings,
multiple measurements have been performed and the relative energy resolution has been
derived with the described procedure, where all examined prototypes showed comparable
results.

Figure 10.10 depicts the resulting relative resolutions for the energy using the Fe-K,
spectral line for the 444 mm and 5+5 mm generation I1I prototypes using a gas mixture of
Ar/CO3 (85/15) and Ar/CO2 (80/20) with different applied high voltage settings. The ob-
tained values for the resolutions are, depending on the utilized prototype, between 8% and
12%. The propagated statistical errors are smaller than the used markers inside the plot.
Studies on the systematical errors will be available with modified setups using the SPADIC
1.0. According to the limited dynamic range of the SPADIC v0.3 and due to the resulting
limited possible configurations on the high voltage and the gas gain respectively only the
presented amount of measurements could be performed. The resolution also depends on
the choice of the gas mixture. For this in lab measurements only a mix of argon and car-
bon dioxide could be used, although the future experiment will use xenon instead of argon.

The presented measurements concerning the energy resolution have been done in a setup
that fixes the position in x and y of the measurement. According to the expected bulging
of the entrance window of the full size generation IV prototypes a position dependent
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Figure 10.10: Resulting energy resolution for the 4+4mm and 54+5mm generation III
prototypes using a gas mixture of Ar/COy (85/15) and Ar/CO2 (80/20)
depending on the applied high voltage [Dil10].

determination of the energy resolution has to be performed additionally.
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11 Test Beam Campaigns

To test the performance of the generation III and IV prototypes two campaigns at the
experimental area T9 of the CERN Proton Synchrotron (PS) have been accomplished.
The CERN PS delivers a secondary particle beam of mixed electrons and pions at mo-
menta of 2GeV/c up to 15GeV/c [DFHT98]. This allows a simultaneous measurement
of these particles for the quantification of the electron / pion separation capabilities for
the employed prototypes. The generation III prototypes have been tested in the 2011 test
beam campaign, whereas the generation IV prototypes were studied in beam in 2012.

11.1 Test Beam Campaign 2011

The 2011 test beam campaign took place from 17.10.2011 until 30.10.2011 with the aim of
testing the small size prototypes for their electron-pion separation capabilities in combi-
nation with a variety of radiator prototypes. Furthermore their pad response function was
investigated. The generation III prototypes FFM004, FFMO005 and FFMO006, together with
the prototype FFMO002 of the generation II for comparison, have been read out with the
SPADIC v0.3. In total ~244 GB of raw data have been recorded with overall ~27,913,600
events in 204 runs corresponding to a 153h 24min 25s of data taking time. The campaign
has been performed in cooperation with prototypes for the RICH and the TOF CBM
detector subsystem and together with TRD development groups from Miinster, Bucharest
and Dubna. The schematic layout of the test beam setup is presented in figure 11.1, a
photo from top is illustrated in figure 11.2 and a detailed photo of the prototypes from
IKF Frankfurt are shown in figure 11.3.

In beam direction, the first detectors are two Cherenkov counters (Cherenkov 1+2)
which are used for reference particle identification in conjunction with the Pb-glass calorime-
ter (see chapter 12.1) at the end of the beam line. Subsequent to the Cherenkov counters
a plastic scintillator (Sc 1) and a fiber tracker (FT') used as trigger detectors have been
placed, followed by the RICH prototype. In total 12 TRD prototypes have been placed
downstream of the RICH prototype. Two of them are with dedicated drift region read
out via FASP and MADC from the Bucharest group followed by four prototypes with
also drift and SPADIC v0.3 read out provided by the IKP Miinster. The four prototypes
without drift by the IKF Frankfurt follow up in the mentioned sequence. Two prototypes
of the Dubna group are most downstream and read out with a PASA chip and the MADC
system. After the TRD prototypes two resistive plate chambers (RPCs) complete the line
up of to be tested prototypes. In the end of the beam line a second plastic scintillator for
triggering and the Pb-glass calorimeter for reference PID are placed.

All tested TRD prototypes have been served by a common gas system. The used gas
mixture for all measurements was Xe/COy (80/20). For initial flushing pure Argon has
been used. The monitored contamination with oxygen inside the gas system was in the
order of less than 100 ppm.
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Figure 11.1: Schematic drawing of the setup during the test beam campaign 2011 (not to
scale) [FS12].

Figure 11.2: Bird’s-eye view photo of the setup 2011 [FS12].
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11.1 Test Beam Campaign 2011

Figure 11.3: Photo of the generation II and III Frankfurt prototypes equipped with the
ALICE type radiator.

A schematic overview of the used data acquisition (DAQ) system is shown in figure 11.4.
The investigated prototypes have been read out with SPADIC rev 0.3 chips connected with
SUSIBO boards to the DAQ system. Informations from trigger and particle identification
detectors have been packed and synchronized in a multi-branch system (MBS) [R. 00].
Data storage and publishing to the online monitoring system has been handled by the
Data Acquisition Backbone Core (DABC) [J.A09].

The ROOT based [R. 97] GSI Object Oriented On-line Off-line system Go4 [J.A13]
has been used for online monitoring. A simple noise cancellation algorithm based on the
assumption that the two lowest channels are not hit and carry no signal has been used to
average the noise and subtract it from all channels. With this cleaned signals further basic
monitoring has been performed. A simple overlay of all signals has been used to monitor
the raw and cleaned signal. A screenshot of one of the first events of the 2011 beam time
in the Go4 online monitoring system is shown in figure 11.5. By correlating the maximum
amplitude of each MWPC to the others a rough alignment could be achieved. In the last
analysis step of the online monitoring all information of all other detectors in the DAQ
system is available, which allows already for electron-pion separated spectra of deposited
charge using the pre-cleaned raw data and a simple three-pad fixed clustering algorithm.
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Figure 11.4: Schematic layout of the data acquisition system used at the 2011 test beam
campaign [Lin12]
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11.1 Test Beam Campaign 2011
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11 Test Beam Campaigns
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Figure 11.6: Schematic drawing of the setup during the test beam campaign 2012 (not to
scale) [FS13]

During the 2011 test beam campaign a variety of trigger setups have been used. All
trigger configurations sensitive to particles passing through the beam line require at least
a signal over a given threshold in the plastic scintillators. Additionally to these triggers
sensitive to particles, a periodic trigger in the PS spill pause has been applied to record
empty events, which is used for baseline and noise subtraction in the analysis.

After setting up all required systems the TRD prototypes have been tested with de-
veloped radiator prototypes at a fixed beam energy of 3 GeV followed by an energy scan
with the ALICE type reference radiator at energies of 2, 4, 6, 8, and 10 GeV. The observed
noise level in the online monitoring was low although a small break down of the baseline at
later time bins of the used SPADIC v0.3 has been recorded, which could be compensated
in the offline analysis with the used noise cancellation algorithm (see chapter 12.2.1).

11.2 Test Beam Campaign 2012

The 2012 test beam campaign took place from 28.10.2012 to 11.11.2012 with the aim of
testing the full size generation IV prototypes with a set of potential radiator candidates for
the final experimental setup. The prototypes FFMO010 and FFMO011 have been integrated
in a common setup at CERN T9 together with a prototype of the RICH detector sys-
tem, two prototypes of the TOF RPC and in total seven TRD prototypes (three from the
Miinster group, two from Bucharest, and two from IKF). The setup of the participating
detector systems is similar to the one used in 2011. The schematic layout is presented in
figure 11.6, a photo of the setup is shown in figure 11.7 and a detailed photo of the full
size prototypes from IKF Frankfurt is shown in figure 11.8.

The sequence of detectors in the beam line starts with two Chernenkov counters ( Cherenkov
1+2) for reference particle identification (PID) followed by a fiber tracker (FT' 1) which
determines a position information of the passing particle. A second fiber tracker (FT 2)
is placed at the end of the beam line. With both fiber trackers it was assumed to get an
information on the particle trajectory and so on the exact point of transition. Unfortu-
nately this was not possible due to a malfunction of F'T' 2. A plastic scintillator (Sc 1) was
placed between the RICH prototypes and the first TRD prototype as a trigger detector. In
total seven TRD prototypes have been tested: three prototypes with drift region, support

98



11.2 Test Beam Campaign 2012

Figure 11.7: Bird’s-eye view photo of the setup 2012 [Ber12].
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11 Test Beam Campaigns

Figure 11.8: Photo of the full size generation IV prototypes in the beam line (still with
protection shield in front of the fragile foil based entrance window).

structure for the entrance window and SPADIC based read out by the IKP Miinster, two
prototypes with FASP by the Group from Bucharest, and the two prototypes of the IKF
Frankfurt also based on SPADIC read-out. Two RPC prototypes closed the sequence of

prototypes. The last detector in the beam line was a lead glass calorimeter for reference
PID as in 2011.

As in the previous test beam campaign all tested TRD prototypes have been supplied
by a common gas system. The gas mixture in all measurements was Xe/COz (80/20).
For initial flushing pure argon has been used. The contamination with oxygen has been
monitored.

A schematic overview of the data acquisition (DAQ) system in the 2012 test beam cam-
paign is shown in figure 11.9. Data from the fiber tracker and the RICH detectors are
read-out with read out reciver cards (ROC). It was planed to read out the SPADIC based
TRD prototypes with the SPADIC v1.0, but due to the lag of functional hardware it was
only possible to read out one of the Miinster detectors for prove of principle test in a small
number of runs. For the majority of runs and for the Frankfurt prototypes the SPADIC
v0.3 read-out chain has been used. For the beam monitoring and trigger detectors, the
FASP based TRDs and the RPC prototypes the data have been packed and shipped via
an MBS system.

Connected to the DAQ system the Go4 online monitoring system used in the 2011
campaign has been extended and improved. A noise cancellation scheme based on the
covariance calculation (see chapter 12.2.1) has been implemented as well as an adapted
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11.2 Test Beam Campaign 2012
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Figure 11.9: Schematic layout of the data acquisition system used at the 2012 test beam
campaign [LB13].
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11 Test Beam Campaigns

alignment scheme. A screenshot of one of the first taken events is shown in figure 11.11.

The accomplishment of the 2012 test beam campaign was driven by a systematic radia-
tor studies. Additionally the particle momentum dependencies have been studied at beam
energies of 2, 4, 6 and 8 GeV. Compared to the campaign in 2011 an enhanced noise level
was observed, which can be seen in a broader base line band in 11.11.

11.2.1 External conditions 2012

One of the aims of the 2012 test beam campaign was to prove the functionality and con-
trollability of a thin foil-based entrance window. During the test beam a set of external
conditions have been recorded using the EPICS [PSK13] system as well as a log book. Fig-
ure 11.10 depicts the temperature, the absolute ambient pressure, the humidity and the
differential overpressure inside the FFMO11 prototype. These values have been obtained
by measuring stations directly inside the T9 experimental area as well as at the gas area
outside the experimental area but inside the east area hall.
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11.2 Test Beam Campaign 2012
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Figure 11.10: Trending ambient conditions during the time of the 2012 test beam cam-
paign: temperature (top left), ambient pressure (top right), humidity (lower
left), differential overpressure (lower right) in the gas line of FFMO011.
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12 Results from the Test Beam Campaigns

In this chapter the analysis performed to quantify the performance of the prototypes and
the radiators during the two test beam campaigns in 2011 and 2012 is described. To
emphasize the development and the evolution of the examined prototypes the analysis
procedures are done equally for all prototypes and reference detectors. In all plots of the
following chapter electron and electron related-data is shown in red, pion and pion-related
data is shown in black.

12.1 External Particle ldentification

Particle identification from independent reference detectors is essential to characterize the
performance the prototype detectors. During both test beam campaigns the information
from two Cherenkov counters (Cherenkov 1 and Cherenkov 2) and a lead glass calorime-
ter (Lead Glass) combined have been used to distinguish between electrons and pions (see
chapter 11.1 and 11.2). This analysis has been performed for all runs of both test beam
campaigns.

The raw signals of the three reference detectors are shown in figure 12.1 for run 2110015
of the 2011 campaign exemplary. To perform the particle identification a set of thresholds
(cuts) has been used to select signal candidates of electrons and pions. Regions in the
spectra have been selected for each individual detector where signals of electrons and pions
are expected. The red lines in 12.1 indicate the region of expected electrons, the black
lines for pions respectively. These thresholds have been chosen such, that the selected
samples of electrons and pions are as pure as possible (by giving enough statistics for the
present analysis) and to enable the following procedure of quantifying the purity of the
samples defined by these cuts.

By making use of all three reference detectors it is possible to determine a particle iden-
tification with two of these detectors and analyze the third reference detector. Figure 12.2
shows selected signals for each detector by determining the particle identification with
the remaining ones. The spectra of electrons and pions of the Cherenkov 1 counter have
been filled with electron and pion signals selected by Cherenkov 2 and Lead Glass, for
Cherenkov 2 the particle identification of Chrenkov 1 and Lead Glass have been used and
finally for the Lead Glass the information of Cherenkov 1 and 2 has been used.

With this selection clean spectra for electrons and pions for each reference detector were
obtained, which allows the determination of the contamination of the selected samples at
each cut position in the analysis requiring a particle identification. The clean spectra of
electrons and pions have been scaled to fit the maximum of the raw spectra. The panels
in the left column of figure 12.3 shows the scaled clean samples and the sum of both in
green compared to the raw spectra in blue. The right part of figure 12.3 depicts the ratio
of summed up scaled clean samples to the actual raw spectrum. At higher values the ratio
suffers from low statistics which results in large errors. The dip at low values for the two
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106



12.1 External Particle Identification

h koyv 1: .
Ceﬂ gl\éns selected via Ch2+Pb

electrons selected via Ch2+Pb

IIIIILI_II IIIII|_|,|,| IIIIII|,|,| IIIIII_I_II__L

0 500

@
c
3 10
10°
10?
10
1
I
5
3 10*
@
c
=3
8
10°
10°
10
1
Figure 12.2:

o'|'|T|'| IIIIIIII| IIIIIIII| IIIIII|T| TTTT

2000

2500
ADC Cherenkov 1

Cheﬂkgi\{)nzé selected via Ch1+Pb

electrons selected via Ch1+Pb

IIIII|_|,|,| IIIII|_|,|,| IIIIILI_I] IIIIII_I,I,I_L

2500
ADC Cherenkov 2

L |
1500

1000 2000

Lead Glass: .
pions selected via Ch1+Ch2
electrons selected via Ch1+Ch2

2000

2500
ADC Lead Glass

L
|
500 1000

Spectra of selected signals for each detector with determined reference particle
identification by the other two reference detectors, respectively.

107



12 Results from the Test Beam Campaigns

Cherenkov counters is caused by the fact that muons could not be filtered out reliably.
Besides this, the ratio shows that the scaled histograms of selected clean electrons and
pions describe the raw spectra over a wide range and almost over the complete range.

With the knowledge of the composition of the raw spectra obtained with the reference
particle identification detectors the running integral of the electron and pion component
can be computed. For electrons, which show up at high values in the reference detectors,
the integral starts from the upper edge of the spectra and sums up the content for every
bin of the histogram going from high values to low values on the x-axis. This running
integral is shown as solid red line in the upper panels of figure 12.4. For pions this cal-
culation starts at low values and sums up bin by bin towards higher values on the x-axis.
The resulting running integral is shown as a solid black line in figure 12.4 for pions. To
determine the corresponding contamination the reverse running integral has also been
computed: to obtain the contamination of the pion sample, the electron sample has been
integrated from low values to high values, which is shown as dashed red line, and the
pion sample from high to low values is shown as dashed black line. This reverse running
integral represents the amount of wrong identified particles at a given position in the raw
spectra. The right panels of figure 12.4 depict the ratio of correctly identified particles to
wrong identified particles at a given cut position for electrons in red and pions in black.
With this procedure, the purity of each reference detector used has been obtained.

Using the individual purities of the reference particle identification, two sets of cuts have
been prepared for the later analysis of the test beam data. The first set is aimed for a very
clean particle identification and only allows a contamination of 1% misidentified particles
in each set disregarding the consequently following decreasing in event statistics. If the
requested value could not be reached, the minimum in the regarded distribution has been
selected. The combination of the individual purities results in an overall contamination
of the electron and pion samples. A fraction of ~ 1- 1076 of the total electron spectra
is generated by misidentified pions in the runs with a particle momentum of 3GeV/c
at the 2011 test beam campaign. The pion sample is contaminated with a fraction of
~ 5.25 - 1079 with misidentified electrons in this runs. The second set of soft particle
identification cuts applies thresholds of maximal 10% misidentified particles and increases
the event statistics. The resulting contamination is in the order of a fraction of ~ 1-1073
of the total spectra for electrons and pions.

12.2 Signal extraction

The raw signals of the prototypes are digitized and read out with the SPADIC rev. 0.3.
These signals are contaminated with noise. To quantify the performance of the prototypes
and the raw signals of the prototypes have to be analyzed and a correction algorithm has
been developed [Dill3]. Figure 12.5 shows a single event recorded with the SPADIC 0.3.
The signal has been generated by an induced pulse on the foil based entrance window. The
color code of the shown histograms represents the eight read-out channels of the SPADIC.
The x-axis shows the corresponding time bin of the SPADIC read out cycle and the y-axis
represents the ADC value of the digitized signal. According to the spread of the baselines
and structures at higher time bins, comparing figure 12.5 left and right already reasons a
noise correction algorithm.
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Figure 12.5: Raw signal recorded by the SPADIC. The signal has been generated via a
test pulse on the entrance window to mimic a real signal including electronic
noise of the prototype on the left, and a test pulse generated directly in the
SPADIC without external distortions (compare to figure 8.2) on the right
[Dil13).

For comparison figure 12.5 (right) shows a signal generated directly in the read-out
electronics injected in the SPADIC read out chip. A marginal separation of the baseline is
also visible but the general signal shape is without any disturbing structures. The spread
of the baseline is explained with intrinsic differences in the components used for the am-
plification circuit [AFP09].

The distortions in the signal shape in figure 12.5 (left) all show a similar behavior, which
leads to the assumption that this noise is correlated between all eight read out channels.
This correlation enables a procedure to correct the signal carrying channels with the noise
of the non-signal channels which is described in chapter 12.2.1.

To quantify the contamination of the read out signal with electronics noise, an overlay
of 75,000 events injected via the cathode plane into a prototype is shown in figure 12.6.
Each time bin of each channel in every event generates an entry in this two dimensional
histogram, where the color code represents the yield. The width of the resulting band can
be used to determine the spread generated by different baseline values and noise together.
To determine the width of the band in figure 12.6 the fourth time bin has been projected
on the y-axis. The time bin has been chose such that it is before the rising edge of the
signal and so not influenced by the generated signal. The resulting projection is shown in
figure 12.7 [Dil13].

The distribution in figure 12.7 has been fitted with a Gaussian distribution, it has a mean
position at 50 ADC values and a o of about 6. The width of this Gaussian distribution
used already 5% of the dynamic range of the SPADIC 0.3, which underlines the need of
an efficient noise cancellation algorithm. This value can be used to compare to a noise
cancellation scheme and quantify its performance.
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Figure 12.6: Overlay of the noise contaminated read out signal based on 75000 injected
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12.2 Signal extraction

12.2.1 Noise Cancellation Algorithm

According to the considerations of signal extraction a step-wise noise correction algorithm
has been developed, which uses steps to correct the spread of the baseline and a dedicated
step to cancel correlated noise in the signal carrying channels. The overall sequence of the
correction algorithm is shown in figure 12.8.

Raw Data

¥

First Step| First Baseline Correction

L 2

r .

Second Step| Correlated Noise Correction

: ¥

Third Step| Second Baseline Correction

Corrected Data

-

Figure 12.8: Subsequent procedure of noise cancellation [Dil13].

The first step is a correction of the baseline of each individual channel. According to the
read-out delay adjustment of the SPADIC the first five to ten time bins of the signal are
averaged. The resulting average offset is subtracted from every time bin of this channel.
This value represents the offset of the separate channels to a zero value. By subtracting
this offset also the spread among the channels is corrected. This first baseline correction
may already be influenced by any noise contaminating the signal but it is absolutely nec-
essary for the second correction step, because differences in the baseline lead to incorrect
correlation values.

The second step in the noise cancellation scheme corrects for correlated noise in the
signals. To identify this noise and to separate it from also correlated signal an approach
based on a covariance matrix is used. This covariance matrix calculates the correlation
of the signal of each channel to any other channel. The higher the correlation value, the
more common in shape are the signals. The calculation of the correlation value is based
on [Win72]:

()M = 241 (12.1)
A0 D) L e
()™ = (z3) + <:vm (i) ) (12.2)
1
n n— 1 n n 1 e
Ci(,j) - Ci(,j ! + n_1 [(«Tm - <9€z‘>( )) (Uﬁjn - (%‘)( )>] - Eci(j 2 (12.4)
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The deviation of the amplitude x;, of the regarded time bin n from the mean value of
the amplitudes (z;) of the corresponding channels i and j are compared to each other. It
is assumed that the channel with the lowest maximal amplitude does not carry any signal
(it was not hit by any particle in this event), the correlation of all other channels to this
non-hit-channel is calculated. According to the resulting correlation values it is decided
which channel was hit and carries signal, and which has not been hit and only contains
noise. This threshold is used to separate signal carrying channels in the event-by-event
noise correction. By calculating the mean value of all non-hit channels a common noise
for all channels is obtained and subtracted from all channels. The averaging over all non-
signal channels is used to minimize fluctuations in the noise determination by the lowest
non-hit channel and to prevent an overcorrection of the signal carrying channels by ex-
cluding channels which carry signals with lower amplitudes. Simpler correction algorithms
like the usage of only the two lowest channels in amplitude may lead to overcorrections or
may be not efficient in the subtraction of unwanted electronic noise.

Within this event-by-event based noise correction the covariance matrix is calculated
by using the ROOT class TPrinciple [R. 97]. The correlation value is defined to be 1 for
maximal correlation. The TPrinciple class additionally normalizes the correlation values
in the covariance matrix, so that the sum of the values on the principal diagonal add up
to 1. This values represent the correlation values C;; of the regarded vector with itself,
which lead to a normalization @y, and the maximum correlation value ¢;qz:

n
1
§ Cz’,i =1= apnorm = g = Cmax (125)
i

where n represents the number of columns/rows in a symmetric n X n matrix, which is
in this case the number of the considered read out channels.

Figure 12.9 shows the distribution of the correlation values of events taken in run
2410001 with the 44+4 mm prototype at CERN PS during the 2011 test beam campaign.
By taking all eight channels of the SPADIC rev 0.3 into account, a maximal correlation
value of

Conaz = 0.125 (12.6)

has been determined. The peak at C' > 0.112 is the correlation of the reference channel
(lowest amplitude) combined with itself. The shape of the distribution depicts a rise for
values at around

Cij = Cthreshold = 0.112 (12.7)

For lower values the corresponding channels are considered to carry signal. For higher
values the correlation of the signals are more likely to contain noise. The value of Cypreshold
has to be specified for each running condition setting [Dil13].

The final step in the noise correction algorithm is an additional pedestal correction.
This step is required due to slight over- or underestimations in the covariance based noise
correction. It is technically identical to the first offset correction and wipes out deviations
to zero in the baseline of the individual channels. This step terminates the noise correction
procedure.
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Figure 12.9: Distribution of the correlation value for SPADIC 17 in run 2410001 of the 2011
test beam campaign. The depicted values represent the correlation between
the minimal amplitude channel and all remaining seven others to this channel
[Dil13].

To illustrate the performance of the covariance-matrix-based noise cancellation algo-
rithm figure 12.10 brings the not-corrected signal of an event face to face with the cor-
rected signals of the same event. Figure 12.11 opposes an overlay of raw and corrected
events taken in run 2210009 of the 2011 test beam campaign with SPADIC 17 attached to
FFMO006 (444 mm prototype). This overlay demonstrates the expected narrowing of the
baseline band and emphasizes the efficient use of the dynamic range of the SPADIC rev
0.3 ADC.
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Figure 12.10: Raw signals for all eight SPADIC channels (left) and corrected signals only
for channels carrying hit information (right) [Dil13].
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Figure 12.11: Overlay of the raw signals (left) and noise corrected signals (right) for all
eight SPADIC channels [Dil13].

12.3 Cluster Finding Algorithm

The generated signals in the MWPC are split over the segmented pads connected to indi-
vidual channels of the read-out electronics. The digitized and stored signals of the initial
avalanche, referred as cluster, are reconstructed by the cluster finding algorithm. The
reconstructed cluster contains all information (energy loss and potential generated tran-
sition radiation photon) of the deposited charge generated by the particle passing through.

The used cluster finding algorithm processes the noise corrected signals. For each indi-
vidual channel a signal strength is obtained and filled in a histogram as shown in figure
12.12 for demonstration. The signal strength can be the signal amplitude of the given
channel or the integral of the signal region in a given window of time bins.
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Figure 12.12: Demonstration of the cluster finding algorithm: Thresholds are indicated as
blue lines, channels assigned to the cluster are shown as red bars, channels
not counted are depicted in gray.

116



12.4 Spectra of deposited charge

The used cluster finding algorithm employs two different thresholds to determine the
cluster size and its contained deposited charge. The first threshold is used to decide if the
analyzed event contains a sufficiently large signal for further processing. This threshold is
set to a value of 5 in the demonstration in figure 12.12 and is depicted as solid blue line. If
this value is exceeded, all channels over the second threshold are counted as signal carrying
channels. This second threshold is set to a value of 3 in the demonstration in figure 12.12
and is depicted as dashed blue line. The cluster finding algorithm additionally applies
constrains to the cluster shape. It is assumed, that the cluster evolves with monotonically
decreasing signals from its maximum. If a signal in a channel is higher than the neighboring
closer to the maximum value, this channel is rejected (see channel 1 in figure 12.12).
The sum of the signal amplitudes, or the integrated signal respectively, of the individual
channels contributing to the cluster is interpreted as the total deposited charge g, of this
cluster. The distribution of the cluster size is shown in figure 12.13 for the generation III
5+5 mm prototype with ALICE-type radiator in run set 2 of the 2011 test beam campaign.
The average cluster size calculated as the mean of the distributions is 4.48 based on the
signal amplitude and 3.36 based on the integral of the signal region.
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Figure 12.13: Average cluster size obtained with the described cluster finding algorithm
based on the signal amplitude and the signal integrated over time.

12.4 Spectra of deposited charge

The calculated total deposited charge by the cluster finding algorithm is filled into a his-
togram. Based on the external particle identification the values for electrons and pions are
separated. These spectra are normalized to an integral of one and shown in figure 12.14
for the generation I1I and IV 444 mm prototype with the ALICE-type reference radiator
based on integrated signals in the cluster finding algorithm. The results for the amplitude
based cluster finding is shown in figure 12.15

According to the energy loss inside the gas, the spectrum formed by the pions follows
a Landau distribution. For the electrons additionally the emitted TR photon evolves a
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Figure 12.14: Top figure: Integrated ADC distribution for the 4+4 mm generation III pro-
totype, run set 2/2011 with the ALICE type reference radiator. Bottom
figure: 4+4mm generation IV prototype, run set 1/2012 also with ALICE
type reference radiator. The cluster finding algorithm is based on the inte-
grated signal.
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Top figure: Integrated ADC distribution for the 4+4mm generation III
prototype, run set 2/2011 with the ALICE type reference radiator. Bottom
figure: 4+4mm generation IV prototype, run set 1/2012 also with ALICE
type reference radiator. The cluster finding algorithm is based on the signal
amplitude.

119



12 Results from the Test Beam Campaigns

bulge at higher values. The bottom part of figure 12.14 and 12.15 shows the spectra of the
44+4mm Generation IV prototype with the same ALICE-type radiator. During the test
beam campaign 2012 a significant gap between radiator and entrance window impaired the
absorption of the TR photon inside the MWPC. This causes the lowering of the electron
signal, whereas the pion spectra is comparable to the measurement with the generation
IIT prototype of the same geometry.

12.4.1 Gain Calibration

To be able to compare measurements of different prototype geometries and generations a
calibration on the gas gain is mandatory. During the test beam campaign 2012 the condi-
tions for the gas system have been recorded and a variation on the differential overpressure
causes changes in the gas gain and so in the signal generation (see chapter 11.2.1) and
9.2.1. To perform this calibration equally to the data of both test beam campaigns, a pure
data driven approach has been followed.

The energy loss of pions is known to follow a Landau distribution. It has been fitted
and the most probable value (M PV') is extracted. The gain calibration shifts this value to
a fixed position. In this analysis the M PV has been chosen to be at a position of 500 a.u..
A gain calibration factor g.q is obtained by

500
Geal = MPV

This factor is multiplied to the ¢ value obtained by the cluster finding algorithm in
a re-running of the analysis. With this procedure the resulting spectra are corrected for
any variation in the gas gain of the used prototypes.

(12.8)

12.4.2 Electron-Pion-Separation based on one Detector Layer

To quantify the electron-pion separation capabilities of the tested radiator-M WP C-combinations
the characteristic quantity R._, ,<90y is obtained. It is only based on the spectra of de-
posited charge.

Re_ 7 p<go is the fraction of the total pion spectrum, which would be wrongly counted
as electrons when integrating the electron spectrum from the upper edge down to a certain
threshold. This threshold is set to 90% according to the experimental requirement (see
chapter 6.1). The integral of 90% in the electron spectrum defines the position p where the
pion spectrum is divided, represented as green line in figure 12.16. R._, ,<90% is defined
as:

I,

,p<90%e

Re—ﬂ,p<90% = Vi - (129)
T, total

Re_ 7 p<cgon is shown for different radiator prototypes combined with both generation
IV prototypes in figure 12.17.
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12.4 Spectra of deposited charge
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Figure 12.16: Illustration of the definition of misidentified pions. The green line represents
the position of 90% integrated input spectra.
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Figure 12.17: R,_, ,90% for different radiators with the generation IV prototypes.

121



12 Results from the Test Beam Campaigns

12.5 Likelihood Extrapolation Method

The likelihood method is a statistical method to extrapolate the electron-pion-discrimination
capabilities of a tested prototype to a number of multiple layers of subsequently following
prototypes of these kind. These electron-pion-discrimination capability is one of the key
characterizations of a TRD [AW11]. Two kinds of likelihood extrapolations are used, the
classic likelihood and the logarithmic modification.

12.5.1 Classic Likelihood Extrapolation

The classic likelihood is constructed using the spectra of the deposited charge as input.
Taking these measured and normalized spectra of one detector layer as probability distri-
butions for electrons (P(FE;|e)) and pions ((P(E;|p))) to produce a signal of the magnitude
E; (figure 12.16) the likelihood for an electron L, and for a pion L, are defined as [Wil06]:

Pe

Lg=—°— 12.10
el P6+P7T ( )
P
Lp=—="_ 12.11
" P.+P. ( )
with

N N
P, =[] P(Eie) and P, =]]P(Eilr) (12.12)

=1 =1

where the product runs over the number of extrapolated detector layers.

The resulting likelihood spectra for the given input spectra extrapolating from one to
twelve layers are shown in figure 12.18 as an overlay for three, six, nine and twelve layers.
The functional form of the spectra is developing strongly to the characteristic shape with
increasing number of layers. The likelihood spectra for small number of layers (< 3) is
still deformed and shows minor binning effects. These effects are caused by the binning of
the input spectra and the fact that only a finite number of values are available for the over
pronounced dFE /dx region. This effect vanishes to multiple layers due to the multiplicative
construction of L.

The electron/pion capabilities for a TRD are quantified in the number of pions misiden-
tified as electrons when requiring a given electron efficiency. According to the experimental
requirements of less than 1% pions in the electron sample (see chapter 6.1) the pion-as-
electron-misidentification is calculated. To determine the misidentified pions the likelihood
for electrons and pions are integrated from high to low values until the sum reaches the
required 90% for electrons. The fraction of the pion integral to the total integral is inter-
preted as the percentage of misidentified pions. The position of this 90% is represented
with a green line for every layer in Figure 12.19. The pion-as-electron-misidentification
depending on the number layers for one set of radiator and detector prototype is shown
exemplary in Figure 12.20.

By calculating the pion-as-electron-misidentification as function of the requested fraction
of all electrons the position where the border of less than 1% can be reached [ALIO1].
Figure 12.21 shows this relation for a fixed number of layers of generation IV 5+5mm
prototype with attached radiator R002 at a particle momentum of 3 GeV/c exemplary. In
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Figure 12.18: Overlay of the calculated likelihood spectra for three, six, nine and twelve
extrapolated layers represented with gradual bleaching out colors for higher
number of layers.
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Figure 12.19: Mlustration of the definition of misidentified pions. The green line represents
the position of 90% integrated input spectra.
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12 Results from the Test Beam Campaigns

Figure 12.20: Resulting percentage of pions which are identified as electrons depending
on the number of extrapolated layers. The point for one layer is calculated
based on the input due to the binning effects in the over pronounced dE/dz-
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12.5 Likelihood Extrapolation Method

this case, with 6 detector layers and when requiring less than 60% of the electrons, an
misidentification of 1% of the pions can be achieved.
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Figure 12.21: Calculated pion-as-electron-misidentification as function of requested frac-
tion of electrons for 6 layers of generation IV 54+5mm prototype with at-
tached radiator R002 at a particle momentum of 3 GeV/c.

12.5.2 Logarithmic Likelihood Extrapolation

The logarithmic likelihood [Mor| extrapolation uses the same input spectra as the classic
likelihood method and calculates the separate probabilities P, and P;.

P,
Ly =log F: (12.13)
Pr
L, =log -~ 12.14
08 5 ( )

Contrary to the classic likelihood, the range of possible values are [—oo, 00| which al-
lows a wider separation of the likelihood values. An overlay of the resulting spectra of
logarithmic likelihood is shown in figure 12.23.

The logarithmic likelihood spectra are integrated to an electron identification of 90%
equally to the classic likelihood method. Both methods are in very good agreement. The
results for the logarithmic likelihood method are shown as green markers in figure 12.20
and 12.21.
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Figure 12.22: Illustration of the definition of misidentified pions. The green line represents
the position of 90% integrated input spectra.
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Figure 12.23: Overlay of the calculated logarithmic likelihood spectra for three, six, nine
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12.5 Likelihood Extrapolation Method

12.5.3 Results of the Likelihood Extrapolation Methods

It has to be stressed, that the likelihood extrapolation assumes a sufficiently large signal
in each detector layer to contribute to the g.-spectrum. This has to be folded with the
detector efficiency which will lower the final performance.

During the 2011 test beam campaign the generation III prototypes have been tested
only with a small number of radiator prototypes. Figure 12.24 depicts the results of the
classic likelihood extrapolation for the 4+4 mm and 545 mm prototypes combined with
the ALICE reference radiator and without radiator, where only differences in dE/dz cause
a marginal decreasing of the pion-as-electron-misidentification. For the 4+4 mm MWPC
also the results for a foil radiator and the radiator type N are shown. The radiator type
N features a2425 transitions and surpasses the performance of the regular foil radiator
with 250 layers. The radiator type N achieves an pion-as-electron misidentification of
4.15%=+0.11(stat.) T002(syst.) for 6 layers/hits and 0.40%+0.03(stat.) 901 (syst.) for 10
layers/hits in the generation III 4+4 mm MWPC. The statistical errors are obtained by
the pure statistical error on the corresponding likelihood spectra, the systematic error are
originated in the finite binning of the likelihood spectra and the procedure of determining
the 90% border line in this spectra.
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Figure 12.24: Pion-as-electron-misidentification when requiring 90% electron efficiency for
different radiator prototypes combined with the generation III prototypes
during the 2011 test beam campaign.

Figure 12.25 emphasizes the performances for a selected set of layers. Since the future
CBM TRD will consists of three stations with 4+4+2 detector layers the extrapolated
performances for all combinations can be obtained. The compatible low pion-as-electron-
misidentification of the radiator type N lead to a further investigation on foam-based
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radiators during the 2012 test beam campaign.
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Figure 12.25: Comparison of radiators with the 444 mm and 444 mm generation III pro-
totypes in the test beam campaign 2011.

During the test beam campaign 2012 a variety of radiators could be tested with the
generation IV prototypes. As already stated during this campaign an unavoidable gap
between radiator and entrance window caused modifications in the g -spectra. Since
this modification in the input spectra is the same for all runs, a comparison of radiator
performance is still possible.

Figure 12.26 and 12.27 depict the results for the 4+4mm and 5+5mm MWPC pro-
totype. In both cases the radiator prototype R002 features a performance comparable
to the foil-based radiators. At ten extrapolated layers it achieves a pion-as-electron-
misidentification of 0.81%+0.03(stat.) *5:0](syst.) with the 4+4mm MWPC and 0.75%
+0.03(stat.) T901(syst.) with the 545 mm MWPC. Figure 12.28 summarizes the radiator
performances.

During the 2012 test beam campaign a dedicated scan over the particle momentum has
been conducted. The resulting pion-as-electron misidentification for both generation IV
prototypes with the R002 and the regular foil radiator respectively are shown in figure
12.29.
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Figure 12.26: Pion-as-electron-misidentification when requiring 90% electron efficiency for
different radiator prototypes combined with the generation IV 444 mm pro-
totype during the 2012 test beam campaign.
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Figure 12.27: Pion-as-electron-misidentification when requiring 90% electron efficiency for
different radiator prototypes combined with the generation IV 545 mm pro-
totype during the 2012 test beam campaign.
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Figure 12.28: Comparison of radiators with the 4+4 mm and 545 mm generation IV pro-
totypes in the test beam campaign 2012.
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Figure 12.29: Pion-as-electron-misidentification when requiring 90% electron efficiency de-
pending on particle momentum.
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12.6 Pad Response Function

12.6 Pad Response Function

The pad response function characterizes the distribution of a generated cluster and its
spread over the read out pads. The signal height of a given pad is plotted versus its
reconstructed position with respect to the pad with the maximum signal. The position is
obtained via a weighted mean. Figure 12.30 depicts the pad response function exemplary
for the 444 mm (left) and 5+5mm (right) generation IV prototype in run Be_run29 during
the 2012 test beam campaign. In this representation the obtained values are exclusively
calculated for a cluster size of three.

The theoretical description of the pad response function is given by the Mathieson
formula [BRROS] :

Py = KQI\(;E (arctan [\/Etanh KoM+ %)} — arctan [\/Etanh Ko\ — %)])

(12.15)
where
Ko/ K. K.
o fovRs o T VESY Ly 8 (12.16)
4 arctan /K3 2 2 h

with x as the reconstructed position, w as with of the read out pad and h as gap between
anode and cathode plane. K3 is an additional geometrical parameter taking the diameter
d = 20 pm and the anode wires pitch s = 2.5 mm into account. According to [E. 88| the
parameter K3 has been approximated with K3 414mm= 0.3 and K35 5mm= 0.217. The
resulting theoretical pad response function is shown as full black line in figure 12.30. The
discussed overpressure in the MWPC causes a bulging of the entrance windows and thus
a increase of the distance of the anode wires to the entrance window. The resulting de-
formations in the electric field effects the generation of the signal. The deviation of the
measured distribution to the calculated Mathieson distribution can be explained by this
deformations.

12.7 Conclusions

The presented results prove that the proposed MWPCs fulfill the experimental require-
ments. In combination with regular foil radiators and with foam based radiators the
4+4mm and 5+5mm detector geometries can exceed the requested value of 1% in pion-
as-electron-misidentification. However, since foil-based radiators are extremely difficult to
construct, foam-based radiators are proposed. The performance of foam-based radiators is
competitive to regular radiators with comparable specifications. Furthermore foam based
radiators may serve as additional support for the foam based entrance window and, as the
proposed foam is made out of polyethylene which is an industrial mass product, are cost
efficient.
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Figure 12.30: Pad response function for the 4+4mm (top figure) and 5+5mm (bottom
figure) generation IV prototypes for fixed 3 pad cluster size. The theoretical
Mathieson distribution is shown as black line.
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13 Further Developments

The proposed generation I1I and IV prototypes have been proven to fulfill the requirements
in terms of electron-as-pion misidentification. Further currently planned developments and
required measurements are described in brief.

13.1 High Rate Tests

The required high rate test campaign is currently planed for all TRD prototypes of the
involved institutions. It will take place in the FOPI cave at the GSI SIS18 experimen-
tal area. The TRD prototypes will be exposed to a high flux environment of secondary
charged particles where the currents of the applied high voltage are monitored and the
generated raw signals on the pad plane are recorded. A measurement scheme is under
elaboration.

13.2 Front End Electronics

The SPADIC Chip has been designed to serve as the read out electronics for the future
CBM TRD. The prototype of the SPADIC in its revision 0.3 has been used for three test
beam campaigns. A first version of the revision 1.0 has been tested during the 2012 test
beam campaign. The FASP read out chip has also demonstrated its functionality during
the test campaigns. However, the TRB3, a FPGA based read out device, may be a third
potential read out electronics device, which is currently under elaboration.

13.3 Stabilizing the Entrance Window

The variations in the gas gain have been simulated in chapter 9.2 and the unavoidable
bulging of the entrance window have been shown in chapter 10.1. A simple possibility
of stabilizing the entrance window is to make use of a stiff and stable radiator material
to provide additional mechanical stability. By mounting the radiator directly in front of
the entrance window a bulging can be reduced as shown in figure 13.1. Potential radiator
materials have been tested with sufficiently low electron es pion misidentification. A case
study on the feasibility of this setup is currently under investigation.

13.4 Alternative Wire Configuration: Anode and Field Wires

Another possibility to reduce the gas gain variation due to bulging is the usage of an
alternating wire grid configuration [D. 11]. The anode wires are sequenced with wired
connected to the high voltage and grounded wires. The resulting electric field is shown
in figure 13.2. Due to the higher electric field focused in the inner part of the MWPC a
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Figure 13.1: Conceptual idea of supporting and stabilizing the foil-based entrance window
by the radiator material [Dil14].

distance variation at the outer areas has a smaller effect on the simulated gas gain, as for
the classical wire geometry.
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Figure 13.2: Field configuration (left) and electron drift lines (right) of alternating wire
grid [Hell4].

-03

== —————

\l\

I
il

-0.5

]
L]

-0.6

-0.7

SE0
€0

The resulting gain variation depending on the expansion is shown in figure 13.3, which
demonstrates the larger robustness of such configuration.

Prototypes based on the small generation III frame setup using this alternating wire

grid configuration are currently being manufactured and to be tested in an upcoming test
beam campaign.
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T T T T
Relative gain with Xe(80%)/CO (20%) for
4+4mm MWPC alternating HV 1400V / OV
5+5mm MWPC alternating HV 1460V / OV
4+4mm MWPC 1940V ‘
5+5mm MWPC 2220V

-100 100 200

d [um]

Figure 13.3: Gain variation depending on expansion of alternating wire grid configuration

[Hel14].

135






14 Summary

The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will use
collisions of heavy ions to explore the phase diagramm of QCD. A hot and dense state of
nuclear matter will be generated. Rare probes and their reaction products will be recon-
structed and analyzed using the detector setup of CBM.

The Transition Radiation Detector (TRD) of the CBM experiment has to provide
electron-pion separation as well as charged-particle tracking. The intended measurements
of rare probes in an environment of high particle rates define the experimental require-
ments of the TRD. The TRD has to suppress pions over electrons with a factor 100 at an
electron efficiency of 90%. To integrate the TRD into the different measurement scenarios
of CBM it is currently planned to build three stations with 4+4+42 detector layers, which
allows the TRD to be integrated into the experimental setups in an optimal way. For
the realization of a TRD different approaches are followed. Within this work, thin and
symmetric Multi-Wire Proportional Chambers (MWPCs) without additional drift region
were proposed. With respect to the expected high particle flux, thin MWPCs provide a
faster signal generation compared to MWPCs with a dedicated drift region. The proposed
prototypes feature a foil-based entrance window to minimize the material budget and to
reduce the absorption probability of the generated TR photon.

Based on the conceptual design of thin and symmetric MWPCs without drift region,
multiple prototypes were constructed and their performance presented within this thesis.
The existing first generation served as proof-of-concept studies. With the constructed
prototypes of generations II and III the geometries of the wire and cathode planes were
determined to be 4+4mm and 5+5mm. Based on the results of a performed test beam
campaign in 2011 with this prototypes new prototypes of generation IV were manufac-
tured and tested in a subsequent test beam campaign in 2012. Generation IV prototypes
feature real-size dimensions of a module in the inner area of the future TRD.

Prototypes of different radiators were developed together with the MWPC prototypes.
Along with regular foil radiators, foam-based radiator types made of polyethylene foam
were utilized. Also radiators constructed in a sandwich design, which used different fiber
materials confined with solid foam sheets, were used.

For the prototypes without drift region, simulations of the electrostatic and mechanical
properties were performed. The GARFIELD software package was used to simulate the
electric field and to determine the resulting drift lines of the generated electrons. The mean
gas amplification depending on the utilized gas and the applied anode voltage was simu-
lated and the gas-gain homogeneity was verified. Since the thin foil-based entrance window
experiences a deformation due to pressure differences inside and outside the MWPC, the
variation on the gas gain depending on the deformation was simulated. The mechanical
properties focusing on the stability of the entrance window was determined with a finite-
element method to facilitate an approximation on the gas-gain variation.
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14 Summary

The properties of the prototypes were verified with in-lab measurements. The simulated
expansion of the foil-based entrance window was validated with overpressure tests. The
absolute gas gain was measured in a setup using ionizing radiation of a ?Fe source. The
homogeneity of the relative gas gain of the generation IV prototypes at a given expansion
of the entrance window as well as the energy resolution were also determined.

The objective of this work was the determination of the electron-pion separation ca-
pabilities of the MWPC prototypes combined with different radiator prototypes. In test
beam campaigns 2011 and 2012 the prototypes of generation II, III and IV were exposed
to a mixed electron-pion beam at the CERN PS. For these test beam campaigns, an online
monitoring system based on the Go4 framework was developed for the employed SPADIC
v0.3 read-out chain. The data read-out was integrated in the MBS and DABC based data
acquisition system. During the test beam campaign 2012, ambient conditions and slow
control parameters were collected additionally. To determine external particle identifica-
tion two Cherenkov counters and a lead glass were used in combination. A separation
procedure was used to determine the purity of the reference particle identification. The
raw data obtained with the SPADIC v0.3 was noise corrected using a multi-step algo-
rithm. This procedure used empty events to correct for the baseline offsets in the read-out
electronics. Furthermore, the noise of the collected signals was canceled using a covari-
ance matrix approach to distinguish between signal-carrying channels and channels only
containing noise. The corrected data were used in a cluster finding algorithm based on
the signal amplitude as well as on the integrated signal. With this information, in com-
bination with the external particle identification, the spectra of total deposited charge for
electrons and pions were measured. These spectra were corrected for variations in the gas
gain using a multiplicative shifting procedure.

Based on the generated spectra of deposited charge, the electron-pion separation per-
formance of MWPC prototypes combined with the utilized radiator prototypes were eval-
uated in this work. Therefore, a procedure for only one detector layer as well as an
extrapolation method were employed. The extrapolation method was based on the cal-
culation of a classical and a logarithmic likelihood. The electron-as-pion misidentifica-
tion of combined radiator and MWPC prototypes were compared. The performance in
electron-pion-separation of the foam-based radiators turned out to be compatible to the
theoretically well understood regular foil-based radiators. Foam-based radiators represent
an easy-to-handle and cost-efficient alternative to regular radiators. Additionally, they
provide the possibility of a mechanical stabilization for the foil-based entrance window.
The electron-pion separation was also analyzed depending on the momentum of the de-
tected particle. Using the information of the employed cluster-finding algorithm the pad
response functions were determined.

Concluding from the results of the analysis performed in this thesis, thin and symmetric
Multi-Wire Proportional Chambers with amplification region only combined with a foam-
based radiator fulfill the requirements for the Transition Radiation Detector of the CBM
experiment in terms of electron-as-pion misidentification.
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