Goethe Leibniz Terahertz Center

Opener Opener Opener Opener Opener Opener Opener Bm forschung

MIMIRAWE

Imaging and target tracking millimeter-wave radar for space applications

Landing and docking in space require imaging and target tracking sensors that can operate independently of the lighting situation and at the same time have good resolution and precise spatial localization with minimum data rates. Millimeter-wave radar sensors and real-time image processing can meet these requirements.

More information

TeraScreen

Multi-frequency multi-mode Terahertz screening for border checks

TeraSCREEN proposes to develop an innovative concept of multi-frequency multi-mode Terahertz (THz) detection with new automatic detection and classification functionalities. The system developed will demonstrate, at a live control point in Madrid-Barajas International Airport, the safe automatic detection and classification of objects concealed under clothing, whilst respecting privacy and increasing current throughput rates.

More information

TWEETHER

TWEETHER

Internet use and technology has penetrated deeply and fast in society everyday life as no other technology before in the last decades and is expected to do in the future. The enormous flux of data transferred via wireless networks, increasing at exponential pace, makes today’s state of the art networks soon outdated. Large parts of the society are deprived of adequate access to Internet due to the high costs, long deployment time of optical fibres and inadequate performance of wireless networks. This inequality will most likely pertain in the next years.

Millimetre and Terahertz waves are the most promising solution to support the increasing data throughput and to be a credible fibre complement for the last miles. The TWEETHER aim is to realise the millimetre wave Point to multi Point segment to finally link fibre and distribution for a full three segment hybrid network, that is the most cost-effective architecture to reach mobile or fixed final individual client.

The TWEETHER project intends to foster smart wireless network architecture for high capacity everywhere outdoor data distribution, in gigabit class, that other technologies cannot support, at low operating cost. High spectrum and energy efficient W-band (92-95GHz) technology will be developed. A powerful and compact transmission hub based on a novel traveling wave tube power amplifier with performance precluded to any other technology and an advanced chipset in a compact terminal will be realised. The TWEETHER system will be tested in a real operating environment. Integrated smart networks of backhaul for 4G and 5G small cells and of access for residential houses are the targeted market that benefits from the actual light regulation of W-band. A big company Thales Electron Devices, four SMEs, Bluwan, OMMIC, HFSE, Fibernova, and three top Universities, Lancaster, Goethe Frankfurt, Politecnica de Valencia, join their expertise to successfully tackle the formidable challenges of the TWEETHER project.

The Goethe Leibniz Terahertz Center will perform travelling-wave tube and amplifier development, as well as testing. It will also test MMIC chipset for the terminal and base station of the TWEETHER system and will participate in the system design. This work is based on the expertise of the group on TWTA design from pervious projects, such as OPTHER (Link) and PhD thesis (Link)

B²-Monitor

B²-Monitor: Millimeter-Waves for Monitoring Bats and Blades

In-service detection of material failures based on an integrated sensor network is the main goal of structural health monitoring (SHM). We are developing new and integrated methods (hardware and software) for radar-based SHM applications based on microwave and millimeter wave radiation.

More information:

Moll, J.; Arnold, P.; Mälzer, M.; Krozer, V.; Pozdniakov, D.; Salman, R.; Rediske, S.; Scholz, M.; Friedmann, H. & Nuber, A. Radar-based Structural Health Monitoring of Wind Turbine Blades: The Case of Damage Detection, Structural Health Monitoring, 2017 (accepted in June 2017)

Arnold, P.; Moll, J. & Krozer, V., Design of a Sparse Antenna Array for Radar-based Structural Health Monitoring of Wind Turbine Blades, IET Radar, Sonar & Navigation, 2017 (accepted in April 2017)

Scholz, N.; Moll, J.; Mälzer, M.; Nagovitsyn, K. & Krozer, V. Random Bounce Algorithm: Real-Time Image Processing for the Detection of Bats and Birds – Algorithm Description with Application Examples from a Laboratory Flight Tunnel and a Field Test at an Onshore Wind Energy Plant Signal, Image and Video Processing, Vol. 10(8), 2016, pp.1449-1456

Moll, J.; Mälzer, M.; Krozer, V.; Pozdniakov, D.; Salman, R.; Beetz, J. & Kössl, M., Activity Monitoring of Bats in a Laboratory Flight Tunnel Using a 24 GHz FMCW Radar System, 11th European Conference on Antennas and Propagation (Paris, France), 2017 (accepted in December 2016)

Moll, J.; Krozer, V.; Dürr, M.; Zimmermann, R.; Salman, R.; Hübsch, D.; Friedmann, H.; Nuber, A.; Scholz, M. & Kraemer, P., Radar-based Structural Health Monitoring of Wind Turbine Blades, 19th World Conference on Non-Destructive Testing, 2016, Munich, Germany, pp.1-8

Moll, J.; Mälzer, M.; Scholz, N.; Krozer, V.; Pozdniakov, D.; Salman, R.; Zimmermann, R.; Hechavarria, J.; Beetz, J. & Kössl, M., Radar-based Detection of Bats: Experiments in a Laboratory Flight Tunnel, 10th European Conference on Antennas and Propagation, 2016, pp. 1-4

Moll, J.; Mälzer, M.; Scholz, N.; Krozer, V.; Dürr, M.; Pozdniakov, D.; Salman, R.; Zimmermann, R. & Scholz, M. Radar-based Detection of Birds Near Wind Energy Plants: First Experiences from a Field Study 10th German Microwave Conference, 2016, pp. 239-242

Moll, J. & Krozer, V. Radar-based Mechanical Vibration Sensing for Structural Health Monitoring Applications: A Comparison of Radar Transceiver Measurements at 24GHz and 100GHz, 8th European Workshop on Structural Health Monitoring, 2016, pp. 1-6

Scholz, M.; Rediske, S.; Nuber, A.; Friedmann, H.; Moll, J.; Arnold, P.; Krozer, V.; Kraemer, P.; Salman, R. & Pozdniakov, D. Structural Health Monitoring of Wind Turbine Blades using Radar Technology: First Experiments from a Laboratory Study 8th European Workshop on Structural Health Monitoring, 2016, pp. 1-10

RAMMS-project

RAMMS: Reliable and Autonomous Monitoring System for Maritime Structures

A 3-years project has started in 09/2016 that is funded by the Federal Ministry for Economic Affairs and Energy (grant id: 03SX422B) . Four partners from Germany and two partners from Poland are involved in this research. The goal is to develop a structural health and load monitoring system for maritime structures.

ULTRAWAVE

ULTRAWAVE

Ultra capacity wireless layer beyond 100 GHz based on millimetre wave traveling wave tubes

The ULTRAWAVE is a major new international research programme responding to the overwhelming demand of internet traffic to develop ubiquitous wireless data coverage with unprecedented speed at millimetre waves.

For the first time in the Internet’s history, the data used by tablets and smartphones now exceeds that of desktops. Emerging technologies and entertainment such as telemedicine, Internet of Things (IoT), 4K video streaming, cloud gaming, social networks, driverless cars, augmented reality and many other unpredictable applications will need a zettabyte (1,000 billions of billions) of wireless data.

Telecommunication manufacturers and operators have not yet solved how to feed a huge amount of data to a new maze of cells. Fibre is too expensive and difficult, if not impossible, to deploy in many urban areas, due to city council permits or disruption.

A desirable solution is a wireless layer that can provide data at the level of tens of gigabits per second per kilometre square. It also needs to be flexible and come at a low cost.

Only the millimetre wave frequencies, 30–300 GHz, with their multi GHz bandwidths, could support tens of gigabits per second of wireless data rate.

The ULTRAWAVE concept is to create an ultra-capacity layer, aiming to achieve the 100 gigabits of data per second threshold, which is also flexible and easy to deploy. This layer will be able to feed data to hundreds of small and pico cells, regardless of the density of mobile devices in each cell. This would open scenarios for new network paradigms and architectures towards fully implementing 5G.

The ULTRAWAVE ultra capacity layer requires significant transmission power to cover wide areas overcoming the high attenuation at millimetre waves. This will be achieved by the convergence of three main technologies, vacuum electronics, solid-state electronics and photonics, in a unique wireless system, enabled by transmission power at multi Watt level. These power levels can only be generated through novel millimetre wave traveling wave tubes.

The ULTRAWAVE consortium includes five top Academic institutions and three high technology SMEs in millimetre wave and wireless technology, from five European countries: Lancaster in UK, Fibernova and Universitat Politecnica de Valencia in Spain, Ferdinand Braun Institute, Goethe University of Frankfurt and HFSE in Germany, OMMIC in France and University of Rome Tor Vergata in Italy.

The ULTRAWAVE project started on the 1st September 2017 and will be presented to the public by the Kickoff Workshop at Lancaster on the 14th September 2017.

More information is available by visiting www.ultrawave2020.eu

Biomedical

Microwave Breastcancer Detection

Active approaches for microwave mammography are based on the dielectric contrast between healthy and malignant tissue. This allows a three-dimensional localization of one or possibly several tumors. Current research activities consider the heterogeneity of breast tissue which is a major challenge for reliable three-dimensional tumor detection.

More information

CELTA

CELTA

Convergence of Electronics and Photonics Technologies for Enabling Terahertz Applications (CELTA)  

CELTA project aims to develop applications and complete systems for sensing, instrumentation, imaging, spectroscopy, and communications utilizing the terahertz technologies. Goethe Leibniz Terahertz Center focuses on two aspects. First one is the investigation and design of plasmonic detectors with integrated antenna structure and their further application for high resolution camera. Second one is the design and the integration of components for a millimeter-wave imaging radar front-end.  

More information http://www.celta-itn.eu/