Vorträge Stochastik und Finanzmathematik

Studierende und Gäste sind herzlich eingeladen!

Auf dieser Seite finden Sie Informationen über Vorträge folgender Seminare:

  • Rhein-Main Kolloquium Stochastik: Gemeinsames Kolloquium der Arbeitsgruppen Stochastik TU Darmstadt / Gutenberg-Universität Mainz / Goethe-Universität Frankfurt
  • Stochastisches Kolloquium: Forschungsseminar des Schwerpunkts Stochastik
  • Oberseminar Stochastik: Forschungsseminar für Doktoranden und Masterstudenten
  • Oberseminar Stochastische Prozesse und Ihre Anwendungen: Das Oberseminar des FG Stochastik (Prof. Blath) findet regelmäßig statt. Es richtet sich an Bachelor- und MasterkandidatInnen und junge WissenschaftlerInnen der Arbeitsgruppe Stochastik.
  • Blockseminar in Riezlern im Haus Bergkranz: Infos zum Haus Bergkranz gibt es hier
  • Verweis auf weitere interessante Vorträge: außerhalb des Frankfurter Schwerpunkts Stochastik

Vorträge in chronologischer Reihenfolge


Oberseminar Stochastische Prozesse und ihre Anwendung

Jul 21 2025
16:00

RM 10, Raum 711 groß

Timo Dimitriadis: Ein Vortrag aus der Ökonometrie

Titel: Kullback-Leibler-Based Characterizations of Score-Driven Updates

Abstract: Score-driven models have been applied in some 400 published articles over the last decade. Much of this literature cites the optimality result in Blasques et al. (2015), which, roughly, states that sufficiently small score-driven updates are unique in locally reducing the Kullback-Leibler divergence relative to the true density for every observation. This is at odds with other well-known optimality results; the Kalman filter, for example, is optimal in a mean-squared-error sense, but occasionally moves away from the true state. We show that score-driven updates are, similarly, not guaranteed to improve the localized Kullback-Leibler divergence at every observation. The seemingly stronger result in Blasques et al. (2015) is due to their use of an improper (localized) scoring rule. Even as a guaranteed improvement for every observation is unattainable, we prove that sufficiently small score-driven updates are unique in reducing the Kullback-Leibler divergence relative to the true density in expectation. This positive, albeit weaker, result justifies the continued use of score-driven models and places their information-theoretic properties on solid footing.