Frankfurter Seminar - Kolloquium des Instituts für Mathematik


Ginkgo Seminar

Vorkolloquium für Doktoranden, Post-Docs und interessierte Studierende 

An den jeweiligen Veranstaltungstagen wird mit dem Ginkgo-Seminar (Gingko - Grundlagen, Intuition, Neugier für und auf das Kolloquium) gestartet, einer exklusiven Veranstaltung von Doktoranden für Doktoranden, Post-Docs und interessierte Studierende. 


Ziel ist es, die Vorträge "aus der anderen Ecke des Instituts" für alle Interessierten zugänglicher zu machen.

Das Vorkolloquium findet immer ab 15.00 (c.t.) in Raum 711 groß vor dem jeweiligen Vortrag statt.



Frankfurter Seminar

London School of Economics

A recent approach to statistical inference is based on the concept of an e-variable: a nonnegative sample statistic whose expected value is at most one if a given null hypothesis is true. This approach has been found to produce strong statistical error bounds and high statistical power and is easily extendible to sequential, or online, settings. E-variables admit a natural interpretation as the payoff of a financial bet.

In this talk I will discuss how classical ideas from mathematical finance, in particular the numeraire portfolio, enables an optimality theory for e-variables that significantly generalizes earlier results. Our results also lead to a duality theory which yields the so-called reverse information projection in complete generality.

Our work showcases the power of financial methods in a setting where information-theoretic tools have traditionally been preferred.

(Joint work with Martin Larsson and Aaditya Ramdas.)

Ginkgo-Seminar

Nov 26 2025
15:15 - 16:00

Robert-Mayer-Straße 10 | Raum 711

Alexander Dimitrov: Hypothesis Testing: From Binary Testing to E-Variables

Teilnahme nur für Studierende, Promovierende und Postdocs
Tee 16:15 - 16:45 Uhr

Frankfurter Seminar

Universitat de Barcelona

Abstract: One of the most basic and important questions in PDE is that of regularity: to decide whether all solutions to a given PDE are smooth or not.

A classical example is Hilbert's 19th problem, solved in 1956 by De Giorgi and Nash. The regularity theory for elliptic and parabolic PDE experienced a huge development during the second half of the 20th century, and nowadays there are still several problems of crucial importance that remain open.

The aim of this talk is to give an overview of this topic and present some recent results in this direction.

Ginkgo-Seminar

Teilnahme nur für Studierende, Promovierende und Postdocs
Tee 16:15 - 16:45 Uhr 

Frankfurter Seminar

Universität Göttingen

Abstract: Given a bounded submanifold M in R^n, how many rational points with common bounded denominator are there in a small thickening of M? How does this counting function behave if we let the size of the denominator go to infinity?
The study of the density of rational points near manifolds has seen significant progress in the last couple of years. In this talk I will explain why we might be interested in this question, focusing on applications in Diophantine approximation and the (quantitative) arithmetic of projective varieties.