Donnerstags, 14 Uhr ct, Raum 711 groß, Robert-Mayer-Straße 10
Dr. Sven Jarohs
Prof. Dr. T. Weth
Oberseminar Funktionalanalysis und partielle Differentialgleichungen
Sondertermin! Raum 903
We investigate several Chebyshev-type inequalities for general non-monotone functions.
These inequalities play a central role in deriving robust log-convex interpolation inequalities within
the scale of (fractional) Sobolev seminorms. As applications of these results, we explore topics
such as asymptotic compactness, convergence of Sobolev traces, and the convergence from
nonlocal to local behavior for weak solutions of the boundary Dirichlet problem associated with the
regional fractional $p$-Laplacian $(-\Delta)_{p, \Omega}^s$, with $s \in (0,1]$ and $p \in (1,\infty)$,
on smooth a domain $\Omega\subset \mathbb{R}^d$.
Oberseminar Funktionalanalysis und partielle Differentialgleichungen
Raum 711 groß
Abstract:
The Gaussian-like p-Laplacian: Dirichlet problem,eigenvalues, and the Faber–Krahn inequalityOberseminar Funktionalanalysis und partielle Differentialgleichungen
Raum 711 groß
Oberseminar Funktionalanalysis und partielle Differentialgleichungen
Raum 107
Oberseminar Funktionalanalysis und partielle Differentialgleichungen
Raum 711 groß
Oberseminar Funktionalanalysis und partielle Differentialgleichungen
Oberseminar Funktionalanalysis und partielle Differentialgleichungen
Sondertermin, Raum 903
Oberseminar Funktionalanalysis und partielle Differentialgleichungen