Theoretical Quantum Optics WS18/19

                                 

Lecturer: Prof. Dr. Walter Hofstetter 


Course Information

  • Am 4. März 2019 findet die Klausureinsicht von 14:00 bis 16:00 Uhr in Raum 01.101 statt.
  • Eine Liste der Prüfungsergebnisse der Klausur sortiert nach den Matrikelnummern der Prüfungsteilnehmer liegt im Büro 01.137 aus.
  • For the participation in the tutorials a registration is necessary. Please join a tutorial group for the course "Theoretical Quantum Optics WS18/19" in the eLearning-Portal at https://elearning.physik.uni-frankfurt.de/goto_FB13-PhysikOnline_crs_20854.html (you can also find the course in Theoretische Physik> Hofstetter> Theoretical Quantum Optics WS18/19).
  • The course will start on Oct 16, 2018.
  • Die Termine und den Ort der Klausur und Nachklausur finden Sie hier (the dates and the location of the two exams can be found here).
  • Bitte beachten Sie, dass man sich zu den schriftlichen Klausuren online anmelden muss, um an den Prüfungen teilzunehmen. Die Information zum Anmeldeschluss finden Sie ebenfalls hier (please note that you have to register online for the written exams in order to take the exams. The information on the registration deadline can also be found here).


Dates and Location

Dates: Tuesdays and Thursdays, 10:00 - 12:00
Location: Phys. 01.114


Tutorials

Thursdays, 08:00 - 09:45, Phys. 02.116
Fridays, 13:00 - 15:00 Phys. 01.114

Head tutor: Dr. Michael Pasek (Phys. 01.137), Office hours: TBD

Tutors: Dr. Jaromir Panas (Phys. 01.138), Dr. Junhui Zheng (Phys. 01.112).


Topics

  • Quantization of electromagnetic fields and properties of coherent states
  • Squeezed states
  • Phase space representation
  • Wigner function
  • Quantum mechanics of open systems
  • Lindblad and Fokker-Plank equations
  • Quantum Markov processes
  • Decoherence and theory of measurement
  • Quantum information with quantum optical systems
  • Cavity QED
  • Quantum theory of the laser
  • Light forces
  • Ultracold atomic gases


Lecture Notes

Lecture #DateTopicScriptSupplementary material
1-2 16.10; 18.10 quantization of the electromagnetic field; thermal and coherent states lecture 1
lecture 2
Nobel prize 2012: controlled quantum systems of atoms and light
3-4 23.10; 25.10 squeezed states;
quantum phase
lecture 3
lecture 4
 
5-6 30.10; 01.11 classical vs. quantum coherence
 
lecture 5
lecture 6
semiclassical simulation of the double slit experiment
7-8 06.11; 08.11 photon bunching;
beam splitter, Mach-Zehnder interferometer
lecture 7
lecture 8
Hanbury-Brown and Twiss experiment
photon anti-bunching
Hong-Ou-Mandel interferometer
9-10 13.11; 15.11 representations of the electromagnetic field: P- and Q-functions
 
lecture 9
lecture 10
 
11-12 20.11; 22.11 Wigner function;
atom driven by classical field, Fermi's golden rule
lecture 11
lecture 12
experiment 1; experiment 2
measurement of Wigner function
13-14 27.11; 29.11 atom driven by quantum field, spontaneous and stimulated emission;
Rabi- and Jaynes-Cummings-model
lecture 13
lecture 14
Could Feynman have said this?
15-16 04.12; 06.12 vacuum Rabi oscillations;
collapse and revival
lecture 15
lecture 16
collapse and revival in ultracold bosons; collapse and revival in microwave cavity QED
17-18 11.12; 13.12 dressed states;
entanglement, von Neumann entropy
lecture 17
lecture 18
Rydberg dressing; collapse and revival of Rydberg-dressed spin system
19-20 18.12; 20.12 open quantum systems, generalized measurement;
Kraus representation, quantum noise for a Qbit
lecture 19
lecture 20
 
21-22 15.01; 17.01 amplitude damping channel, optical Bloch equations
 
lecture 21
lecture 22
Bloch equations and dissipative light force
23-24 22.01; 24.01 Lindblad master equation, damped harmonic oscillator;
microscopic derivation
lecture 23
lecture 24
 
25-26 29.01; 31.01 dissipative 2-state system
 
lecture 25
lecture 26
 
27-28 05.02; 07.02 quantum Brownian motion
 
lecture 27
 
 
29-30 11.02; 14.02 measurement and decoherence, trapped ion quantum computer
 
lecture 29
lecture 30
decoherence of a Schrödinger cat state;
review on trapped ion quantum computers


Exercises

Tutorial #Due dateTopic
1 23.10.2018 interaction picture, coherent states and density matrices
2 30.10.2018 quadrature operators, squeezed states and phase distribution function
3 06.11.2018 Casimir effect, Poynting vector and squeezed vacuum
4 13.11.2018 Hanbury-Brown Twiss experiment, second-order coherence
5 20.11.2018 beam splitter operator, Michelson interferometer
6 27.11.2018 homodyne detection, multiphoton interference
7 04.12.2018 Wigner function, quantum state tomography
8 11.12.2018 Rabi model, three-level atom
9 18.12.2018 cavity QED; collapse and revival in the Jaynes-Cummings model
10 15.01.2019 multi-photon JC model; von Neumann entropy
11 22.01.2019 phase and amplitude damping
12 29.01.2019 decoherence of coherent states, properties of the Lindblad master equation
13 05.02.2019 atomic dephasing model, dissipation in a two-level system


Literature

AuthorTitlePublisher
M. Scully and M. Zubairy Quantum Optics Cambridge, 1997
R. Loudon The Quantum Theory of light Oxford, 2000
S. Haroche and J.-M. Raimond Exploring the Quantum: Atoms, Cavities and Photons Oxford, 2006
D.F. Walls and G.J. Milburn Quantum Optics Springer, 2007
G. Agarwal Quantum Optics Cambridge University Press, 2013
C. Gardiner and P. Zoller The Quantum World of Ultra-Cold Atoms and Light (Book I and II) Imperial College Press, 2014 and 2015
C.W. Gardiner and P. Zoller Quantum Noise Springer, 2004