Inhaltsverzeichnis
Publications 2023
All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals
Bergs ACF, Liewald JF, Rodriguez-Rozada S, Liu Q, Wirt Ch, Bessel A, Zeitzsche Nl, Durmaz H, Nozownik A, Dill H, Jospin M, Vierock J, Bargmann CI, Hegemann P, Wiegert JS, Gottschalk A (2023) Nat Commun 14, 1939 (2023). https://doi.org/10.1038/s41467-023-37622-6
pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity
Seidenthal M, Janosi B, Rosenkranz N, Schuh N, Elvers N, Willoughby M, Zhao X and Gottschalk A (2022) Front. Cell. Neurosci., 2023, Volume 17; https://www.frontiersin.org/articles/10.3389/fncel.2023.1120651/full
Coordinated electrical and chemical signaling between two neurons orchestrates switching of motor states
Bach M, Bergs A, Mulcahy B, Zhen M, Gottschalk A (2022) bioRxiv 2022.01.04; https://www.biorxiv.org/content/10.1101/2023.01.04.522780v2
Publications 2022
Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles
Vettkötter D, Schneider M, Liewald JF, Zeiler S, Guldan J, Watanabe S and Gottschalk A (2022) Nature Communications 2022-12-19; https://www.nature.com/articles/s41467-022-35324-z
WormRuler: A software to track body length used to characterize a super red-shifted channelrhodopsin in Caenorhabditis elegans
Seidenthal M*; Vettkötter D* and Gottschalk A (2022) microPublication Biology; 10.17912/micropub.biology.000607
Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior
Bergs A, Henss T, Glock C, Nagpal J and Gottschalk A (2022) C. elegans: 89-115; https://link.springer.com/protocol/10.1007/978-1-0716-2181-3_6
Photoactivated Adenylyl Cyclases as Optogenetic Modulators of Neuronal Activity
Henss T, Schneider M, Vettkötter D, Costa WS, Liewald JF and Gottschalk A (2022) cAMP Signaling: 61-76; https://link.springer.com/protocol/10.1007/978-1-0716-2245-2_4
Publications 2021
BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons
Vierock J, Rodriguez-Rozada S, Dieter A, Pieper F, Sims R, Tenedini F, Bergs ACF, Bendifallah I, Zhou F, Zeitzschel N, Ahlbeck J, Augustin S, Sauter K, Papagiakoumou E, Gottschalk A, Soba P, Emiliani V, Engel AK, Hegemann P and Wiegert JS (2022) Nature communications 12 (1): 1-20 https://www.nature.com/articles/s41467-021-24759-5
RIM and RIM-binding protein localize synaptic Cav2 channels in a differential manner to regulate transmission in neuronal circuits bioRxiv
Optogenetic tools for manipulation of cyclic nucleotides, functionally coupled to CNG‐channels. British Journal of Pharmacology
Henss T, Nagpal J, Gao S, Scheib U, Pieragnolo A, Hirschhäuser A, Schneider-Warme F, Hegemann P, Nagel G and Gottschalk A (2021) British Journal of Pharmacology, 18 March 2021; https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/bph.15445
Synapsin Is Required for Dense Core Vesicle Capture and cAMP-Dependent Neuropeptide Release
Yu S-c, Liewald JF, Shao J, Steuer Costa W and Gottschalk A (2021) Journal of Neuroscience 41 (19), 4187-4201; https://pubmed.ncbi.nlm.nih.gov/33820857/
Publications 2020
Context-dependent operation of neural circuits underlies a navigation behavior in Caenorhabditis elegans. PNAS
Ikeda M, Nakano S, Giles AC, Xu L, Steuer Costa W, Gottschalk A and Mori I. (2020) , online 2 March 2020. doi: 10.1073/pnas.1918528117
Transcriptional adaptation in Caenorhabditis elegans.
Serobyan V, Kontarakis Z, El-Brolosy MA, Welker JM, Tolstenkov O, Saadeldein AM, Retzer N, Gottschalk A, Wehman AM and Stainier DYR (2020) eLife 9:e50014. doi: 10.7554/eLife.50014
RPamide neuropeptides NLP-22 and NLP-2 act through GnRH-like receptors to promote sleep and wakefulness in C. elegans.
Van der Auwera P, Frooninckx L, Buscemi K, Vance RT, Watteyne J, Mirabeau O, Temmerman L, De Haes W, Fancalszky L, Gottschalk A, Raizen DM, Nelson MD, Schoofs L and Beets I. (2020) Sci Rep 10: 9929, https://doi.org/10.1038/s41598-020-66536-2
BIPOLES: a tool for bidirectional dual-color optogenetic control of neurons.
Vierock J, Rodriguez-Rozada S, Pieper F, Dieter A, Bergs A, Zeitzschel N, Ahlbeck J, Sauter K, Gottschalk A, Engel AK, Hegemann P and Wiegert S. (2020) bioRxiv, 16th July 2020. doi: https://doi.org/10.1101/2020.07.15.204347
Publications 2019
Epidermal Growth Factor Signaling Promotes Sleep through a Combined Series and Parallel Neural Circuit. Curr. Biol.
Konietzna J, Fritz M, McWhirter R, Leha A, Palumbos S, Steuer Costa W, Oranth A, Gottschalk A, Miller III D, Hajnal A and Bringmann H. (2019) December 12 online; https://doi.org/10.1016/j.cub.2019.10.048
Synapsin is required for dense core vesicle capture and cAMP-dependent neuropeptide release.
Yu S-c*, Steuer Costa W*, Liewald JF*, Shao J and Gottschalk A. (2019) bioRxiv November 12th. doi: https://doi.org/10.1101/838953
A GABAergic and peptidergic sleep neuron as a locomotion stop neuron with compartmentalized Ca2+ dynamics.
Steuer Costa W*, Van der Auwera P*, Glock C, Liewald JF, Bach M, Schüler C, Wabnig S, Oranth A, Masurat F, Bringmann H, Schoofs L, Stelzer EHK, Fischer S and Gottschalk A. (2019) Nat. Communic. 10: 4095. https://rdcu.be/bQLlU
Rhodopsin-based voltage imaging tools for use in muscles and neurons of Caenorhabditis elegans.
Azimi Hashemi N*, Bergs ACF*, Schüler C, Scheiwe AR, Steuer Costa W, Bach M, Liewald JF and Gottschalk A. (2019) PNAS 116: 17051-60. https://doi.org/10.1073/pnas.1902443116
Robust and sensitive GFP-based cGMP sensor for real time imaging in intact Caenorhabditis elegans.
Woldemariam S, Nagpal J, Hill T, Li J, Schneider M, Shankar R, Futey M, Varshney A, Ali N, Mitchell J, Andersen K, Barsi-Rhyne B, Tran A, Steuer Costa W, Krzyzanowski M, Yu Y, Brueggemann C, Hamilton S, Ferkey D, VanHoven M, Sengupta P, Gottschalk A and L'Etoile N. (2019) Genetics 213: 59-77. https://doi.org/10.1534/genetics.119.302392
Optogenetischer Werkzeugkasten für neue experimentelle Ansätze.
Bergs ACF*, Liewald J and Gottschalk A. 2019. BIOspektrum 4.19, pp398
A photoactivatable botulinum toxin for inducible control of neurotransmission.
Liu Q, Sinnen BL, Boxer EE, Schneider MW, Grybko MJ, Buchta WC, Gibson ES, Wysoczynski CL, Ford CP, Gottschalk A, Aoto J, Tucker CL and Kennedy MJ. (2019) Neuron 101: 863-875. https://doi.org/10.1016/j.neuron.2019.01.002
Publications 2018
Food sensation modulates locomotion by dopamine and neuropeptide signaling in a distributed neuronal network.
Oranth A*, Schultheis C*, Tolstenkov O, Erbguth K, Nagpal J, Hain D, Brauner M, Wabnig S, Steuer Costa W, McWhirther R, Zels S, Palumbos S, Miller DM III, Beets I and Gottschalk A. (2018) Neuron 100: 1414-1428. https://doi.org/10.1016/j.neuron.2018.10.024
Expanding the Optogenetics Toolkit by Topological Inversion of Rhodopsins.
Brown J, Behnam R, Coddington L, Tervo DGR, Martin K, Proskurin M, Kuleshova E, Park J, Phillips J, Bergs ACF, Gottschalk A, Dudman JT and Karpova AY. Cell 175: 1131-1140. https://doi.org/10.1016/j.cell.2018.09.026
Circuit Degeneracy Facilitates Robustness and Flexibility of Navigation Behavior in C. elegans.
Ikeda M, Nakano S, Giles AC, Steuer Costa W, Gottschalk A and Mori I. bioRxiv August 5, 2018, doi: https://doi.org/10.1101/385468
Functionally asymmetric motor neurons contribute to coordinating locomotion of Caenorhabditis elegans.
Tolstenkov O, Van der Auwera P, Steuer Costa W, Bazhanova O, Gemeinhard T, Bergs ACF and Gottschalk A. (2018) eLife 7: e34997: pdf
Endophilin A and B join forces with clathrin to mediate synaptic vesicle recycling in Caenorhabditis elegans.
Yu S-c*, Jánosi B*, Liewald J, Wabnig S, Gottschalk A. (2018) Front Molec Neurosci 11: 196. (17.5.2018): https://www.frontiersin.org/articles/10.3389/fnmol.2018.00196/abstract
Rhodopsin optogenetic toolbox v2.0 for light-sensitive excitation and inhibition in Caenorhabditis elegans.
Bergs ACF, Schultheis C, Fischer E, Tsunoda SP, Erbguth K, Husson SJ, Govorunova E, Spudich JL, Nagel G, Gottschalk A*, Liewald JF*. (2018) PLoS ONE 13(2): e0191802. https://doi.org/10.1371/journal.pone.0191802
Publications 2017
An optogenetic arrhythmia model to study catecholaminergic polymorphic ventricular tachycardia mutations.
Fischer E, Gottschalk A* and Schueler C* (2017) Sci. Rep. 7: 17514 pdf
Fast cAMP modulation of neurotransmission via neuropeptide signals and vesicle loading.
Steuer Costa W, Yu S-c, Liewald JF and Gottschalk A. (2017) Curr. Biol. 27: 495-507 https://pubmed.ncbi.nlm.nih.gov/28162892/
Publications 2016
RIC-3 phosphorylation enables dual regulation of excitation and inhibition of C. elegans muscle.
Safdie G, Liewald JF, Kagan S, Battat E, Gottschalk A and Treinin M. (2016) Mol. Biol. Cell 27: 2994-3003. https://www.molbiolcell.org/doi/10.1091/mbc.e16-05-0265
Photoswitchable diacylglycerols enable optical control of protein kinase
Frank JA, Yushchenko DA, Hodson DJ, Lipstein N, Nagpal J, Rutter GA, Rhee J-S, Gottschalk A, Brose N, Schultz C and Trauner D. (2016) C. Nat. Chem. Biol. 12: 755-62 https://pubmed.ncbi.nlm.nih.gov/27454932/
Publications 2015
Arrhythmogenic effects of mutated L-type Ca2+-channels on an optogenetically paced muscular pump in Caenorhabditis elegans.
Schüler C*, Fischer E*, Shaltiel L, Steuer Costa W and Gottschalk A. (2015) Sci. Rep. 5:14427 | DOI: 10.1038/srep14427. PDF
Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
Glock C, Nagpal J and Gottschalk A (2015) In: C. elegans: Methods and Applications, Methods Mol. Biol. (Biron D, Haspel G, eds.), vol. 1327, DOI 10.1007/978-1-4939-2842-2_8.
Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.
Gao S#, Nagpal J#, Schneider M, Kozjak-Pavlovic J, Nagel G* and Gottschalk A*. (2015) Nat. Communic. 6: 8046. pdf
A photosensitive degron enables acute light-induced protein degradation in the nervous system.
Hermann A, Liewald JF and Gottschalk A. (2015) Curr. Biol. 25: R733–R752
High-throughput all-optical analysis of synaptic transmission and synaptic vesicle recycling in Caenorhabditis elegans.
Wabnig S, Liewald JF, Yu S-c and Gottschalk A (2015) PLoS ONE 10(8): e0135584. doi:10.1371/journal.pone.0135584 PDF
AzoCholine enables optical control of alpha 7 nicotinic acetylcholine receptors in neural networks.
Damijonaitis A, Broichhagen J, Urushima T, Hüll K, Nagpal J, Laprell L, Schönberger M, Woodmansee DH, Rafiq A, Sumser MP, Kummer W, Gottschalk A and Trauner D. (2015 Mar 5) ACS Chem. Neurosci. 6(5):701-7. doi: 10.1021/acschemneuro.5b00030. Epub 2015 Mar 27.
A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans.
Butler VJ, Branicky R, Yemini E, Liewald JF, Gottschalk A, Kerr RA, Chklovskii DB and Schafer WR. (2015 Jan 6) J. R. Soc. Interface 12(102)
Publications 2014
Photoactivated Adenylyl Cyclases as Optogenetic Modulators of Neuronal Activity.
Steuer Costa W, Liewald JF and Gottschalk A. (2014) in: Photswitching Proteins (Sidney Cambridge, Editor). Springer Protocols. Methods Mol. Biol. 1148, p. 161-75
C. elegans nicotinic acetylcholine receptors are required for nociception.
Cohen E, Chatzigeorgiou M, Husson SJ, Steuer Costa W, Gottschalk A, Schafer WR and Treinin M. (2014) Mol. Cell. Neurosci. 59C: 85-96
Synthetic retinal analogs modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools.
AzimiHashemi N, Erbguth K, Vogt A, Riemensperger T, Rauch E, Woodmansee D, Nagpal J, Brauner M, Sheves M, Fiala A, Kattner L, Trauner D, Hegemann P, Gottschalk A* and Liewald J*. (2014) Nat. Communic. 5: 5810
Optogenetische Analyse der Funktion neuronaler Netzwerke und der synaptischen Transmission in Caenorhabditis elegans.
Gottschalk A. (2014) Neuroforum 4/2014: 278-286
Optogenetic analyses of neuronal network function and synaptic transmission in Caenorhabditis elegans.
Gottschalk A. (2014) e-Neuroforum 5: 77-85
Publications 2013
Optogenetic actuation, inhibition, modulation and readout for neuronal networks generating behavior in the nematode Caenorhabditis elegans.
de Bono M, Schafer WR and Gottschalk A. (2013) In "Optogenetics"; Hegemann P, Sigrist S (editors), De Gruyter, Dahlem Workshop Reports
In vivo synaptic recovery following optogenetic hyperstimulation.
Kittelmann M, Liewald JF, Hegermann J, Schultheis C, Brauner M, Steuer Costa W, Wabnig S, Eimer S, and Gottschalk A. (2013) PNAS 110: E3007-E3016
Sensory Neuron Fates Are Distinguished by a Transcriptional Switch that Regulates Dendrite Branch Stabilization.
Smith CJ, O’Brien T, Chatzigeorgiou M, Spencer WC, Feingold-Link E, Husson SJ, Hori S, Mitani S, Gottschalk A, Schafer WR and Miller DM. (2013) Neuron 79: 266–280
Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behavior.
Husson SJ, Gottschalk A and Leifer AM. (2013) Biol. Cell 105(6): 235-50
Genetically encoded calcium indicators for multi-color neural activity imaging in combination with optogenetics.
Akerboom, J, Carreras Calderon N, Tian L, Wabnig S, Prigge M, Tolö J, Gordus A, Orger MB, Severi KE, Macklin JJ, Patel R, Pulver SR, Wardill TJ, Fischer E, Schüler C, Chen T-W, Sarkisyan, KS, Marvin JS, Bargmann, CI, Kim DK, Kügler S, Lagnado L, Hegemann P, Gottschalk A, Schreiter ER and Looger LL. (2013) Front. Molec. Neurosci. 6: 2
Publications 2012
RAB5 and RAB10 cooperate to regulate neuropeptide release in Caenorhabditis elegans.
Sasidharan N, Sumakovic M, Hannemann M, Hegermann J, Liewald JF, Olendrowitz C, Koenig S, Grant BD, Rizzoli SO, Gottschalk A and Eimer S. (2012) PNAS 109: 18944-9
Bimodal activation of different neuron classes with the spectrally red-shifted Channelrhodopsin chimera C1V1 in Caenorhabditis elegans.
Erbguth K, Prigge M, Schneider F, Hegemann P and Gottschalk A. (2012) PLoS ONE 7: e46827
Specific expression of Channelrhodopsin-2 in single neurons of Caenorhabditis elegans.
Schmitt C, Schultheis C, Pokala N, Husson SJ, Liewald JF, Bargmann, CI and Gottschalk A. (2012) PLoS ONE 7: e43164
Light controlled tools.
Brieke C, Rohrbach F, Gottschalk A, Mayer G and Heckel A. (2012)
Angew. Chem. Int. Ed. 51: 8446-8476
Keeping track of worm trackers.
Husson S, Steuer Costa W, Schmitt C and Gottschalk A. (2012) www.WormBook.org
Microbial light-activatable proton pumps as neuronal inhibitors to functionally dissect neuronal networks in C. elegans.
Husson SJ, Liewald JF, Schultheis C, Stirman JN, Lu H and Gottschalk A. (2012) PLoS ONE 7: e40937
Optogenetic analysis of a nociceptor neuron and network reveals ion channels acting downstream of primary sensors.
Husson S, Steuer Costa W, Wabnig S, Stirman JN, Watson JD, Spencer WC, Akerboom J, Looger LL, Treinin M, Miller III DM, Lu H and Gottschalk A. (2012) Curr. Biol. 22: 743-752
A multispectral optical illumination system with precise spatiotemporal control for the manipulation of optogenetic reagents.
Stirman J, Crane M, Husson S, Gottschalk A and Lu H. (2012) Nat. Prot. 7: 207-220.
Publications 2011
C. elegans selects distinct crawling and swimming gaits via dopamine and serotonin.
Vidal-Gadea A, Topper S, Young L, Crisp A, Kressin L, Elbel E, Maples T, Brauner M, Erbguth K, Axelrod A, Gottschalk A, Siegel D and Pierce-Shimomura J. (2011) PNAS 108: 17504-17509.
Optogenetic analysis of GABAB receptor signalling in Caenorhabditis elegans motor neurons.
Schultheis C, Brauner M, Liewald JF and Gottschalk A. J. Neurophysiol. 106: 817-827. Epub 2011 May 25. pdf
Optogenetic long-term manipulation of behavior and animal development.
Schultheis C, Liewald JF, Bamberg, E, Nagel G and Gottschalk A. PLoS One 6(4): e18766. pdf
Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans.
Stirman J, Crane M, Husson S, Wabnig S, Schultheis C, Gottschalk A*, Lu H*. (*corresponding authors) Nat. Methods. 8:153-8. Epub 2011 Jan 16. pdf
PACα - an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans.
Weissenberger S, Schultheis C, Liewald J, Erbguth K, Nagel G and Gottschalk A. J. Neurochem. 116(4):616-25. doi: 10.1111/j.1471-4159.2010.07148.x. Epub 2011 Jan 20. pdf
Publications 2010
High-throughput study of synaptic transmission at the neuromuscular junction enabled by optogenetics and microfluidics.
Stirman J, Brauner M, Gottschalk A and Lu H. J. Neurosci Meth. 191(1):90-3. Epub 2010 Jun 9. pdf
Publications 2009-2003
An ER-resident membrane protein complex regulates nicotinic actylcholine receptor subunit composition at the synapse.
Almedom RB, Liewald J, Hernando G, Schultheis C, Rayes D, Pan J, Schedletzky T, Hutter H, Bouzat C and Gottschalk A. EMBO J. 2009 Sep 2;28(17):2636-49. Epub 2009 Jul 16. pdf
The Conserved RIC-3 Coiled-Coil Domain Mediates Receptor specific Interactions with Nicotinic Acetylcholine Receptors.
Biala Y, Liewald JF, Ben-Ami HC, Elishevitz E, Shteingauz A, Gottschalk A and Treinin M. Mol Biol Cell. 2009 Mar;20(5):1419-27. Epub 2008 Dec 30. pdf
Optogenetic analysis of synaptic function.
Liewald JF, Brauner M, Stephens GJ, Bouhours M, Schultheis C, Zhen M and Gottschalk A. Nat. Meth. (2008) 5: 895-902. pdf
Intestinal Signaling to GABAergic Neurons Regulates a Rhythmic Behavior in C. elegans.
Mahoney TR, Luo S, Round EK, Brauner M, Gottschalk A, Thomas JH and Nonet ML. PNAS (2008) 105: 16350-16355. pdf
Multimodal fast optical interrogation of neural circuitry.
Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A and Deisseroth K. Nature. 2007 Apr 5;446(7136):633-9. pdf
Der lichtgesteuerte Fadenwurm: Einblicke in das Nervensystem von C. elegans
Gottschalk A. Forschung Frankfurt 1/2007. pdf
Regulation of nicotinic receptor rafficking by the transmembrane Golgi protein UNC-50.
Eimer S, Gottschalk A, Hengartner M, Horvitz HR, Richmond J, Schafer WR and Bessereau J-L. EMBO J. (2007) 26: 4313-4323. pdf
Visualization of integral and peripheral cell surface proteins in live Caenorhabditis elegans.
Gottschalk A and Schafer WR. J. Neurosci. Meth. 2006 Jun 30;154(1-2):68-79. Epub 2006 Feb 8. pdf
Identification and characterization of novel nicotinic receptor-associated proteins in Caenorhabditis elegans.
Gottschalk A*, Almedom RB, Schedletzky T, Anderson SD, Yates III JR and Schafer WR.*
EMBO J. (2005) advanced online publication; doi:10.1038/sj.emboj.7600741. (*shared corresponding authorship) pdf
Light-activation of Channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses.
Nagel G, Brauner M, Liewald J, Adeishvili N, Bamberg E and Gottschalk A. Curr. Biol. 15, (2005), 2279-2284. pdf
eat-2 and eat-18 are Required for Nicotinic Neurotransmission in the Caenorhabditis elegans Pharynx
McKay J, Raizen D, Gottschalk A, Schafer WR and Avery L. Genetics, 166 (2004), 161-69. pdf
Pre C. elegans (yeast spliceosomes: 1997 – 2002)
Direct probing of RNA structure and RNA-protein interactions in purified HeLa cell's and yeast spliceosomal U4/U6.U5 tri-snRNP particles.
Mougin A, Gottschalk A, Fabrizio P, Lührmann R and Branlant, C. J. Mol. Biol., 317 (2002), 631-49.
The yeast U5 snRNP coisolated with the U1 snRNP has an unexpected protein composition and includes the splicing factor Aar2p.
Gottschalk A, Kastner B, Lührmann R and Fabrizio P. RNA, 7, (2001), 1554-65.
A novel yeast U2 snRNP protein, Snu17p, is required for the first catalytic step of splicing and for progression of spliceosome assembly.
Gottschalk A, Bartels C, Neubauer G, Lührmann R, Fabrizio P. Mol. Cell. Biol., 21 (2001), 3037-46.
Identification by mass spectrometry and functional analysis of novel proteins of the yeast [U4/U6.U5] tri-snRNP.
Gottschalk A, Neubauer G, Banroques J, Lührmann R, Fabrizio P. EMBO J., 18 (1999), 4535-48.
Interaction of the U1 snRNP with nonconserved intronic sequences affects 5' splice site selection.
Puig O, Gottschalk A, Fabrizio P and Séraphin B. Genes Dev., 13 (1999), 569-580.
Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA- binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure.
Watkins NJ, Gottschalk A, Neubauer G, Kastner B, Fabrizio P, Mann M and Lührmann R. RNA, 4 (1998), 1549-68.
A comprehensive biochemical and genetic analysis of the yeast U1 snRNP reveals five novel proteins.
Gottschalk A, Tang J, Puig O, Salgado J, Neubauer G, Colot HV, Mann M, Séraphin B, Rosbash M, Lührmann R and Fabrizio P.
RNA, 4 (1998), 374-93.
Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry.
Neubauer G, Gottschalk A, Fabrizio P, Séraphin B, Lührmann R and Mann M. Proc. Natl Acad. Sci. USA, 94 (1997), 385-90.